
Craig Interpolation for Decidable First-Order
Fragments

Balder ten Cate1[0000−0002−2538−5846] and Jesse Comer2[0009−0006−9734−3457]

1 ILLC, University of Amsterdam, Amsterdam 1098 XH, NL
2 University of Pennsylvania, Philadelphia, PA 19104, USA

Abstract. We show that the guarded-negation fragment (GNFO) is, in
a precise sense, the smallest extension of the guarded fragment (GFO)
with Craig interpolation. In contrast, we show that the smallest extension
of the two-variable fragment (FO2), and of the forward fragment (FF)
with Craig interpolation, is full first-order logic. Similarly, we also show
that all extensions of FO2 and of the fluted fragment (FL) with Craig
interpolation are undecidable.

Keywords: Craig interpolation · Decidability · Abstract model theory.

1 Introduction

The study of decidable fragments of first-order logic (FO) is a topic with a long
history, dating back to the early 1900s ([39,51], cf. also [16]), and more actively
pursued since the 1990s. Inspired by Vardi [54], who asked “what makes modal
logic so robustly decidable?” and Andreka et al. [1], who asked “what makes
modal logic tick?” many decidable fragments have been introduced and studied
over the last 25 years that take inspiration from modal logic (ML), which itself
can be viewed as a fragment of FO that features a restricted form of quantifica-
tion. These include the following fragments, each of which naturally generalizes
modal logic in a different way: the two-variable fragment (FO2) [41], the guarded
fragment (GFO) [1], and the unary negation fragment (UNFO) [21]. Further de-
cidable extensions of these fragments were subsequently identified, including the
two-variable fragment with counting quantifiers (C2) [28] and the guarded nega-
tion fragment (GNFO) [4]. The latter can be viewed as a common generalization
of GFO and UNFO. Many decidable logics used in computer science and AI, in-
cluding various description logics and rule-based languages, can be translated
into GNFO and/or C2. In this sense, GNFO and C2 are convenient tools for
explaining the decidability of other logics. Extensions of GNFO have been stud-
ied that push the decidability frontier even further (for instance with fixed-point
operators and using clique-guards), but these fall outside the scope of this paper.

In an earlier line of investigation, Quine identified the decidable fluted frag-
ment (FL) [50], the first of several ordered logics which have been the subject of
recent interest [46,47,48,49,43]. The idea behind ordered logics is to restrict the
order in which variables are allowed to occur in atomic formulas and quantifiers.

2 B. ten Cate, J. Comer

FO

C2 GNFO

GFO UNFOFO2

Modal Logic

FF

FL
(*)decidability

finite model

property

FO First-order logic
FO2 Two-variable fragment
C2 Two-variable fragment with counting
GFO Guarded fragment

GNFO Guarded-negation fragment
UNFO Unary-negation fragment
FF Forward fragment
FL Fluted fragment

Fig. 1. Landscape of decidable fragments of FO with () and without () CIP.
The inclusion marked (∗) holds only for sentences and self-guarded formulas.

Another recently introduced decidable fragment that falls in this family is the
forward fragment (FF), whose syntax strictly generalizes that of FL. Both FL
and FF have the finite model property (FMP) [43] and embed ML [33], but are
incomparable in expressive power to GFO [44], FO2, and UNFO.3

Ideally, an FO-fragment is not only decidable, but also model-theoretically
well behaved. A particularly important model-theoretic property of logics is the
Craig Interpolation Property (CIP). It states that, for all formulas φ,ψ, if φ |= ψ,
then there exists a formula ϑ such that φ |= ϑ and ϑ |= ψ, and such that all non-
logical symbols occurring in ϑ occur both in φ and in ψ. Craig [23] proved in 1957
that FO itself has this property (hence the name). Several refinements of Craig’s
result have subsequently been obtained (e.g., [42,10]). These have found applica-
tions in various areas of computer science and AI, including formal verification,
modular hard/software specification and automated deduction [40,18,30], and
are emerging as a new prominent technology in databases [52,12] and knowledge
representation [38,20,36]. While we have described CIP here as a model theoretic
property, it also has a proof-theoretic interpretation. Indeed, it has been argued
that CIP is an indicator for the existence of nice proof systems [31].

Turning our attention to the decidable fragments of FO we mentioned ear-
lier, it turns out that, although GFO is in many ways model-theoretically well-
behaved [1], it lacks CIP [32]. Likewise, FO2 lacks CIP [22] and the same holds for
C2 ([34, Example 2] yields a counterexample). Both FF and FL lack CIP [7]. On
the other hand, UNFO and GNFO have CIP [21,3]. Figure 1 summarizes these
known results. Note that we restrict attention to relational signatures without
constant symbols and function symbols. Some of the results depend on this re-
striction. Other known results not reflected in Figure 1 (to avoid clutter) are that

3 Specifically, the FO-sentence ∃xy(R(x, y)∧R(y, x)) belongs to GFO, FO2 and UNFO,
but is not expressible in FF, since the structure consisting of two points with symmet-
ric edges and the structure (Z, S) with S the successor relation, are “infix bisimilar,”
as described in [7].

Craig Interpolation for Decidable First-Order Fragments 3

the intersection of GFO and FO2 (also known as GFO2) has CIP [32]. Similarly,
the intersection of FF with GFO and the intersection of FL with GFO (known
as GFF and GFL, respectively) have CIP [7].

When a logic L lacks CIP, the question naturally arises as to whether there
exists a more expressive logic L′ that has CIP. If such an L′ exists, then, in
particular, interpolants for valid L-implications can be found in L′. This line
of analysis is sometimes referred to as Repairing Interpolation [2]. If L′ is an
FO-fragment, and our aim is to repair interpolation by extension, then there is
a trivial solution: FO itself is an extension of L satisfying CIP. We will instead
consider the following refinement of the question: can a natural extension L′

of L be identified which satisfies CIP while retaining decidability? We will an-
swer this question for three of the fragments depicted in Figure 1 that lack CIP,
by identifying the minimal natural extension L′ of L satisfying CIP. Our main
results can be stated informally as follows:

1. The smallest logic extending GFO that has CIP is GNFO.
2. The smallest logic extending FO2 that has CIP is FO, and no decidable

extension of FO2 has CIP.
3. The smallest logic extending FF that has CIP is FO, and no decidable ex-

tension of FL has CIP.

The precise statements of these results will be given in the respective sections.
They involve some natural closure assumptions on the logics in question, and, for
the undecidability results, some assumptions regarding the effective computabil-
ity of the translation between the extension and the logic that it extends.

These results give us a clear sense of where, in the larger landscape of decid-
able fragments of FO, we may find logics that enjoy CIP. What makes the above
results remarkable is that, from the definition of the Craig interpolation property,
it doesn’t appear to follow that a logic without CIP would have a unique minimal
extension with CIP. Note that a valid implication may have many possible in-
terpolants, and the Craig interpolation property merely requires the existence of
one such interpolant. Nevertheless, the above results show that, in the case FO2,
GFO, and FF, such a unique minimal extension indeed exists (assuming suitable
closure properties, which will be spelled out in detail in the next sections).

Related Work. Several other approaches have been proposed for dealing with
logics that lack CIP. One approach is to weaken CIP. For example, it was shown
in [32] that GFO satisfies a weak, “modal” form of Craig interpolation, where,
roughly speaking, only the relation symbols that occur in non-guard positions
in the interpolant are required to occur both in the premise and the conclusion.
As it turns out, this weakening of CIP is strong enough to entail the (non-
projective) Beth Definability Property, which is one important use case of CIP.
See also Section 7 for further discussion of weak forms of CIP.

Another recent approach [34] is to develop algorithms for testing whether
an interpolant exists for a given entailment. That is, rather than viewing Craig
interpolation as a property of logics, the existence of interpolants is studied as an

4 B. ten Cate, J. Comer

algorithmic problem at the level of individual entailments. The interpolant exis-
tence problem turns out to be indeed decidable (although of higher complexity
than the satisfiability problem) for both GFO and FO2 [34].

Additional results are known for UNFO and GNFO beyond the fact that
they have CIP. In particular, CIP holds for their fixed-point extensions [9,8],
interpolants can be constructed effectively, and tight bounds are known on the
size of interpolants and the computational complexity of computing them [11].

Our paper can be viewed as an instance of abstract model theory for frag-
ments of FO. One large driving force behind the development of abstract model
theory was the identification of extensions of FO which satisfy desirable model-
theoretic properties, such as the compactness theorem, the Löwenheim-Skolem,
and Craig interpolation. One takeaway from this line of research is that CIP is
scarce among many “reasonable” FO-extensions. An early result of Lindström
showed that FO-extensions with finitely many generalized quantifiers and satis-
fying the downward Löwenheim-Skolem property do not have the Beth property
(and hence fail to satisfy CIP) [37]. Similarly, Caicedo [17], generalizing an early
result by Friedman [25], established a strong negative CIP result that applies
to arbitrary proper FO-extensions with monadic generalized quantifiers. For a
survey of negative interpolation results among FO-extensions, see [53]. These
negative results not only show that CIP is scarce among extensions of FO, they
also provide clues as to where, within the space of all extensions, one may hope
to find logics with CIP. Our results can be viewed similarly, except that they
pertain to (extensions of) fragments of FO.

Our results can also be appreciated as characterizations of GNFO and of
FO. While traditional Lindström-style characterizations are maximality theo-
rems (e.g., FO is a maximal logic having the compactness and Löwenheim-Skolem
properties), our results can be viewed as minimality theorems (e.g., GNFO is
the minimal logic extending GFO and having CIP).

Some prior work exists that studies abstract model theory for (extensions
of) fragments of FO. Most closely related is [19], which studies modal logics
and hybrid logics. Among other things, it was shown in [19] that the smallest
extension of modal logic with the difference operator (ML(D)) which satisfies
CIP is full first-order logic. Additionally, in [27], the authors identified minimal
extensions of various fragments of propositional linear temporal logic (PLTL)
with CIP. Furthermore, it was shown in [19] that every abstract logic extending
GFO with CIP can express all FO sentences and formulas with one free vari-
able, and is thus undecidable. A crucial difference between this result and ours
is that [19] assumes signatures with constant symbols and concerns a stronger
version of CIP, interpolating not only over relation symbols but also over con-
stant symbols. In contrast, we only consider purely relational signatures without
constant symbols. Other prior work on abstract model theory for fragments of
FO are [13,15,26]. Repairing interpolation has also been pursued in the context
of quantified modal logics, which typically lack CIP; in [2], the authors showed
that CIP can be repaired for such logics by adding nominals, @-operators and
the ↓-binder.

Craig Interpolation for Decidable First-Order Fragments 5

Outline. Section 2 introduces the abstract model-theoretic framework. In Sec-
tions 3, 4, and 5, we repair interpolation for FO2, GFO, and FF, respectively. In
Section 6, we provide results showing that, even with weak expressive assump-
tions, extensions of FO2 and FL with CIP are undecidable. In Section 7, we
discuss the implications and limitations of our results, and future directions.

2 Preliminaries

We assume familiarity with the syntax and semantics of FO. Signatures are
denoted by σ and τ , and are assumed to be relational and finite. If φ contains
only relation symbols occurring in σ, then we write M, g |= φ to denote that a
σ-structure M satisfies φ under the variable assignment g. We write xi, yi, zi, ui
to denote variables, and x, y, z, u to denote tuples of variables. We write ai, bi, ci
to denote elements of structures and a, b, c to denote tuples of such elements.
Given a tuple of elements a = a1, . . . , an in a structure M , a tuple of variables
x = x1, . . . , xn, and a variable assignment g, we write g[x/a] to denote the
variable assignment which is the same as g except that g(xi) = ai for each i ≤ n.
In order to state our main results precisely, we must formally define what we
mean by extensions L′ of L (where L is some fragment of FO that lacks CIP).
One option is to let L′ range over fragments of FO that syntactically include L.
However, as it turns out, our main results apply even to extensions that are not
themselves contained in FO. We therefore opt, instead, to work with an abstract
definition of logics, as typically used in abstract model theory.

Abstract Logics. An abstract logic (or logic) is a pair (L, |=L), where L is a
map from relational signatures σ to collections of formulas, and |=L is a ternary
satisfaction relation. A formula of an abstract logic (L, |=L) is an element of L(σ)
for some finite relational signature σ. L must be monotone: if σ ⊆ τ , then L(σ) ⊆
L(τ). Each formula φ has an associated finite set of free variables free(φ), and
we write φ(x) or φ(x1, . . . , xk) to denote that the free variables of φ are exactly
those in the tuple x = x1, . . . , xk. As in the case of FO, a formula φ is a sentence
if free(φ) = ∅. We write sig(φ) to denote the least signature σ such that φ ∈ L(σ).
The ternary satisfaction relation |=L is defined over triples (M, g, φ), where φ
is an L-formula, M is a τ -structure such that sig(φ) ⊆ τ , and g is a variable
assignment with free(φ) ⊆ dom(g); we write M, g |=L φ if this relation holds
between these objects. The notions of logical consequence and logical equivalence
for abstract logics are defined completely analogously to FO. In later sections,
we will prefer to suppress the subscript L in the notation for the satisfaction
relation and write L to denote an abstract logic (L, |=L). Furthermore, we often
write φ ∈ L rather than φ ∈ L(σ), leaving the signature implicit.

All abstract logics L are assumed to satisfy the reduct property and the re-
naming property. The reduct property states that if σ ⊆ τ , then for all φ ∈ L(σ),
all τ -structures M , and all assignments g, if M, g |=L φ, then M ↾ σ, g |=L φ. In
other words, the truth of a formula of an abstract logic L in a structure depends
only on the interpretations of the symbols in the signature of that formula. The

6 B. ten Cate, J. Comer

renaming property states that if ρ : σ → τ is an injective map preserving the
arity of relation symbols, then for each formula φ ∈ L(σ), there is a formula
ψ ∈ L(τ) such that for all τ -structures M , we have that M, g |=L ψ if and only
if ρ−1[M], g |=L φ, where ρ−1[M] is the σ-structure with the same domain as M
where, for each R ∈ σ, we have that Rρ

−1[M] = ρ(R)M . Intuitively, the renaming
property states that if a formula over a signature σ can be expressed in a logic
L, then the formula obtained by renaming all of its relation symbols can also be
expressed in L.

For arbitrary abstract logics L, the Craig interpolation property states that if
φ |=L ψ for L-formulas φ and ψ, then there exists a formula ϑ ∈ L(sig(φ)∩sig(ψ))
with free(ϑ) = free(φ) ∩ free(ψ) such that φ |=L ϑ and ϑ |=L ψ.

We say a formula φ of a logic L expresses a formula ψ of a logic L′ if free(φ) =
free(ψ), sig(φ) = sig(ψ), and for all structures M and assignments g, we have
that M, g |=L φ if and only if M, g |=L′ ψ. We say that a logic L′ is an extension
of a logic L (notation: L ⪯ L′) if L′ can express all formulas of L. An FO-
fragment can then be precisely defined, without reference to syntax, as a logic of
which FO is an extension. We say that L′ is a sentential extension of L (notation:
L ⪯sent L′) if L′ can express all sentences of L.

Let L be a logic and ψ(x1, . . . , xn) be an L-formula. We write JψKM for
the collection of tuples (a1, . . . , an) ∈Mn such that there exists an assignment g
whereM, g |= ψ and g(xi) = ai for each i ≤ n. Given formulas ψ1, . . . , ψk ∈ L(σ),
a σ-structureM , and relation symbols R1, . . . , Rk ∈ σ with |free(ψi)| = arity(Ri)
for each i ≤ k, we define M [R1/ψ1, . . . , Rk/ψk] to be the σ-structure with the
same domain as M and such that RM [R1/ψ1,...,Rk/ψk]

i = JψiKM for each i ≤ k.
We now describe a syntax-free notion of uniform substitution for formulas of an
abstract logic.

Definition 2.1. Let L be a logic and φ ∈ L(σ) with R1, . . . , Rk ∈ sig(φ), where
for each i ≤ k, we have that Ri is a ki-ary relation symbol. Furthermore, let
ψ1, . . . , ψk ∈ L(σ) be formulas with |free(ψi)| = ki for each i ≤ k. We say that
L expresses the substitution of ψ1, . . . , ψk for R1, . . . , Rk in φ if there exists a
formula χ ∈ L(σ) such that, for every σ-structure M ,

M, g |= χ ⇐⇒ M [R1/ψ1, . . . , Rk/ψk], g |= φ.

Most studies in abstract logic assume that the logics under study are regular,
roughly meaning that they can express atomic formulas, Boolean connectives,
and existential quantification. In other words, to study regular logics is to study
extensions of FO. Since we are interested in a more fine-grained view of logics
including FO-fragments, these assumptions are too strong. As a result, the first
step of studying extensions of FO-fragments from the perspective of abstract
logic is to identify natural expressive assumptions for those extensions which are
strictly weaker than regularity. We do this in the respective sections.

Some of our proofs will use second-order quantification (for expository rea-
sons only), and we recall the semantics of these quantifiers here. Given a formula
φ ∈ L(σ ∪ {P}) of some abstract logic L, we can form new formulas ∃Pφ and

Craig Interpolation for Decidable First-Order Fragments 7

∀Pφ with signature σ and the same free variables as φ. Given a σ-structure M
and an assignment g, the semantics of these formulas are defined as follows:

M, g |= ∃Pφ if there is a σ ∪ {P}-expansion M ′ of M
such that M ′, g |= φ, and

M, g |= ∀Pφ if for all σ ∪ {P}-expansions M ′ of M,

we have that M ′, g |= φ.

If L itself does not allow second-order quantification, we can view ∃Pφ and ∀Pφ
as elements of L′(σ) for a suitable extension L′ of L. In particular, if φ is an
FO-formula, then ∃Pφ and ∀Pφ are formulas of second-order logic (SO).

3 Repairing Interpolation for FO2

The two-variable fragment (FO2) consists of all FO-formulas containing only two
variables, say, x and y, where we allow for nested quantifiers that reuse the same
variable (as in ∃xy(R(x, y) ∧ ∃x(R(y, x))), expressing the existence of a path of
length 2). In this context, as is customary, we restrict attention to relations of
arity at most 2. It is known that FO2 is decidable [41] but does not have CIP [22].

3.1 Natural Extensions of FO2

While FO2 is restricted to only two variables and predicates of arity as most 2, it
has no restriction on its connectives: it is fully closed under Boolean connectives
and existential and universal quantification. Because of this fact, we will consider
in this section those abstract logics which are strong extensions of FO2.

Definition 3.1. We say that a logic L′ strongly extends a logic L if L′ extends
L and, for each formula φ ∈ L′ with R1, . . . , Rk ∈ sig(φ), where φ expresses
some ψ ∈ L, and all formulas ψ1, . . . , ψk ∈ L′, we have that L′ expresses the
substitution of ψ1, . . . , ψk for R1, . . . , Rk in φ (cf. Definition 2.1).

Intuitively, Definition 3.1 means that L′ can express uniform substitutions of
its formulas into formulas of L. In other words, the notion of a strong extension
is a syntax-free way to say that L′ extends L and is closed under the connectives
of L. In particular, if L strongly extends FO2, then L can express all of the usual
first-order connectives: for ψ0 and ψ1 expressible in L, it must also be the case
that ¬ψ0, ψ0 ∧ ψ1, and ∃xψ0 are expressible in L, under the usual semantics of
these connectives. Clearly FO2 is the smallest strong extension of itself.

3.2 Finding the Minimal Extension of FO2 with CIP

Recall that we write L ⪯sent L′ if every sentence of L is expressible in L′. Our
main result in this section is the following.

Theorem 3.1. If L is a strong extension of FO2 with CIP, then FO ⪯sent L.

8 B. ten Cate, J. Comer

Proof. We will show by induction on the complexity of formulas that, for every
FO-formula φ(x1 . . . , xn) there is a sentence ψ ∈ L over an extended signature
containing additional unary predicates P1, . . . , Pn, that is equivalent to

∃x1 . . . xn(
(∧
i=1...n

Pi(xi) ∧ ∀y(Pi(y) → y = xi)
)
∧ φ(x1, . . . , xn)).

In other words, ψ is a sentence expressing that φ holds under an assignment
of its free variables to some tuple of elements which uniquely satisfy the Pi
predicates. In the case that n = 0 (i.e., the case that φ is a sentence), we then
have that ψ is equivalent to φ, which shows that FO ⪯sent L.

The base case of the induction is straightforward (recall that we restrict
attention to relations of arity at most 2). The induction step for the Boolean
connectives is straightforward as well (using the fact that L is a strong extension
of FO2, and thus can express all connectives of FO2). In fact, the only non-
trivial part of the argument is the induction step for the existential quantifier.
Let φ(x1, . . . , xn) be of the form ∃xn+1φ

′(x1. . . . , xn, xn+1). By the inductive
hypothesis, there is an L-sentence ψ with sig(ψ) = sig(φ′) ∪ {P1, . . . , Pn+1},
where P1, . . . , Pn+1 are unary predicates not in sig(φ′), which is equivalent to

∃x1 . . . xn∃xn+1(
(∧
i≤n+1

Pi(xi) ∧ ∀y(Pi(y) → y = xi)
)
∧ φ′(x1, . . . , xn, xn+1)).

Now, let ψ′ be obtained from ψ by replacing every occurrence of Pn+1 by P ′ for
some fresh unary predicate P ′; this is expressible in L by the renaming property.
Furthermore, let

γ(x) := ψ ∧ Pn+1(x), and

χ(x) := (P ′(x) ∧ ∀y(P ′(y) → y = x)) → ψ′.

(where x is either of the two variables we have at our disposal; it does not matter
which). Since L strongly extends FO2, both can be written as an L-formula. Then

γ(x) |= χ(x).

Let ϑ(x) ∈ L be an interpolant. Observe that since Pn+1 occurs only in γ(x)
and P ′ only in χ(x), the following second-order entailment is also valid:

∃Pn+1γ(x) |= ϑ(x) |= ∀P ′χ(x).

It is not hard to see that ∃Pn+1γ(x) and ∀P ′χ(x) are equivalent. Indeed, both are
satisfied in a structure M under an assignment g precisely if M ′, g |= φ, where
M ′ is the expansion of M in which Pn+1 denotes the singleton set {g(xn+1)}.
It then follows that ϑ(x), being sandwiched between the two, is also equivalent
to ∃Pn+1γ(x). This implies that ϑ(x) is the unique interpolant (up to logical
equivalence) of the entailment γ(x) |= χ(x), and so it is expressible in L. Then
since L strongly extends FO2, it can express ∃xϑ(x). We claim that this sentence
satisfies the requirement of our claim. To see this, observe that ∃xϑ(x) is equiv-
alent to ∃x∃Pn+1γ(x), which is equivalent to ∃Pn+1ψ, which clearly satisfies the
requirement of our claim. ⊓⊔

Craig Interpolation for Decidable First-Order Fragments 9

4 Repairing Interpolation for GFO

The guarded fragment (GFO) [1] allows formulas in which all quantifiers are
“guarded.” Formally, a guard for a formula φ is an atomic formula α whose free
variables include all free variables of φ. Following [29], we allow α to be an equal-
ity. More generally, by an ∃-guard for φ, we will mean a possibly-existentially-
quantified atomic formula ∃xβ whose free variables include all free variables of
φ. The formulas of GFO are generated by the following grammar:

φ := ⊤ | R(x) | x = y | φ ∧ ψ | φ ∨ ψ | ¬φ | ∃x(α ∧ φ),

where, in the last clause, α is a guard for φ. Note again that we do not allow
constants and function symbols.

In the guarded-negation fragment (GNFO) [4], arbitrary existential quantifi-
cation is allowed, but every negation is required to be guarded. More precisely,
the formulas of GNFO are generated by the following grammar:

φ := ⊤ | R(x) | x = y | φ ∧ φ | φ ∨ φ | ∃xφ | α ∧ ¬φ,

where, in the last clause, α is a guard for φ.
As is customary, the above definitions are phrased in terms of ordinary guards

α. However, it is easy to see that if we allow for ∃-guards, this would not affect
the expressive power (or computational complexity) of these logics in any way.
This is because, when the variables in the tuple x do not occur free in φ, as is
the case when ∃xβ is an ∃-guard for φ, then we can write ∃xβ ∧ φ equivalently
as ∃x(β ∧ φ). In other words, an ∃-guard is as good as an ordinary guard. We
call an FO-formula self-guarded if it is either a sentence or it is of the form α∧φ
where α is an ∃-guard for φ.

In this section, we will require the notions of conjunctive queries (CQs) and
unions of conjunctive queries (UCQs). A CQ is an FO-formula of the form

φ(x1, . . . , xn) := ∃y1 . . . ∃ym(
∧
i∈I

αi),

where each αi is an atomic relation, possibly an equality, whose free variables are
among {x1, . . . , xn, y1, . . . , ym}. The collection of all CQs is expressively equiva-
lent to the fragment FO∃,∧ of first-order logic, which is generated by the following
grammar:

φ := R(x1, . . . , xk) | x = y | φ ∧ φ | ∃xφ.
A UCQ is a finite disjunction of CQs. Importantly, GNFO can be alterna-

tively characterized as the smallest logic which can express every UCQ and is
closed under guarded negation [4]. This is made explicit in the following expres-
sively equivalent grammar for GNFO:

φ := ⊤ | R(x) | x = y | α ∧ ¬φ | q[R1/φ1, . . . , Rn/φn],

where q is a UCQ with relation symbols R1, . . . , Rn and φ1, . . . , φn are self-
guarded formulas with the appropriate number of free variables and generated
by the same recursive grammar. We refer to this as the UCQ syntax for GNFO.

10 B. ten Cate, J. Comer

4.1 Natural Extensions of GFO

Unlike FO2, guarded fragments are peculiar in that they are not closed under
substitution. For example, ∃xy(R(x, y) ∧ ¬S(x, y)) belongs to GFO, but if we
substitute x = x ∧ y = y for R(x, y), we obtain ∃xy(x = x ∧ y = y ∧ ¬S(x, y)),
which does not belong to GFO (and is not even expressible in GNFO). GFO and
GNFO are, however, closed under self-guarded substitution: we can uniformly
substitute self-guarded formulas for atomic relations. We generalize the notion
of a self-guarded formula to abstract logics L as follows: a formula φ(x) ∈ L(σ)
with free(φ) = {x1, . . . , xk} is self-guarded if there is a n-ary relation symbol
G ∈ σ, where n ≥ k, and a tuple of variables y containing exactly the variables
free(φ) ∪ {z1, . . . , zm}, such that for all σ-structures M and assignments g,

M, g |= φ =⇒ M, g |= ∃z1 . . . ∃zmG(y).

Intuitively, we can think of a self-guarded L-formula as a conjunction of the
form α ∧ ψ, where α is an ∃-guard for ψ. We can then capture the notion of
self-guarded substitution for abstract logics by the following definition.

Definition 4.1. We say that an abstract logic L expresses self-guarded sub-
stitutions if, for each formula φ ∈ L with R1, . . . , Rk ∈ sig(φ), and all self-
guarded formulas ψ1, . . . , ψk ∈ L, we have that L can express the substitution of
ψ1, . . . , ψk for R1, . . . , Rk in φ (cf. Definition 2.1).

It was shown in [4] that every self-guarded GFO-formula is expressible in
GNFO. In particular, this applies to all GFO-sentences and GFO-formulas with
at most one free variable (since all such formulas can be equivalently written as
x = x ∧ φ). It is therefore common to treat GNFO as an extension of GFO. To
make this precise, we say that L′ is a self-guarded extension of L if L′ can express
all self-guarded formulas of L (notation: L ⪯sg L′). In Figure 1, the line marked
(*) indicates that GNFO extends GFO in this weaker sense. Furthermore, it is
worth noting that GNFO is also not closed under implication, while GFO is. If it
were, then GNFO would be able to express full negation (using formulas of the
form φ→ ⊥). However, GFO and GNFO both have disjunction and conjunction
in common. We formalize all of these considerations into the following notion.

Definition 4.2. A guarded logic is a logic L such that

1. GFO ⪯sg L,
2. L expresses self-guarded substitutions, and
3. L expresses conjunction and disjunction.

Clearly, GFO and GNFO are both guarded logics. Furthermore, observe that
the smallest guarded logic consists of all conjunctions and disjunctions of self-
guarded formulas of GFO.

Craig Interpolation for Decidable First-Order Fragments 11

4.2 Finding the Minimal Extension of GFO with CIP

Our main result in this section is the following.

Theorem 4.1. Let L be a guarded logic with CIP. Then GNFO ⪯ L.

In other words, loosely speaking, GNFO is the smallest extension of GFO
with CIP. It is based on similar ideas as the proof of Theorem 3.1, but the
argument is more intricate. The main thrust of the argument will be to show
that our abstract logic L can express all positive existential formulas, from which
it will follow easily that L is able to express all formulas in the UCQ syntax for
GNFO. Toward this end, the main technical result is the following proposition.

Proposition 4.1. Let L be a logic with CIP that can express atomic formulas,
guarded quantification, conjunction, and unary implication. Then FO∃,∧ ⪯ L.

Here, we say that a logic L can express guarded quantification if, whenever
φ ∈ L and α is a guard for φ, L can express ∃x(α∧φ); we say that L can express
unary implications if, whenever φ ∈ L and α is an atomic formula with only one
free variable, L can express α→ φ.

The following definition is used in the proof of Proposition 4.1.

Definition 4.3. Let φ be a formula in FO∃,∧, let y = y1, . . . , yn be a tuple of
distinct variables, and let P = P1, . . . , Pn be a tuple of unary predicates of the
same length. Then BINDy 7→P (φ) is defined recursively as follows:

BINDy 7→P (α) = ∃y(α ∧
∧

1≤i≤n Pi(yi))

BINDy 7→P (ϕ ∧ ψ) = BINDy 7→P (ϕ) ∧ BINDy 7→P (ψ)

BINDy 7→P (∃zψ) = ∃z(BINDy 7→P (ψ)),

where α is an atomic formula (possibly an equality).

The BINDy→P operation applied to a formula φ ∈ FO∃,∧ wraps each atomic
subformula of φ with quantifiers for the variables in y, and adds additional
unary predicates for these variables. Thus, the free variables of BINDy 7→P (φ),
for y = y1, . . . , yn, are exactly free(φ) \ {y1, . . . , yn}, which justifies our use of
the word “BIND”. The utility of this definition is due to the following fact: for
any φ ∈ FO∃,∧, whenever M, g |= BINDy→P (φ), and the interpretation in M

of each unary predicate Pi in P is a singleton, then M, g′ |= φ, where g′ is
the extension of g which maps each yi to the unique element satisfying Pi (cf.
Propositions 4.3, 4.4). The following proposition is a simple consequence of the
definition of BIND.

Proposition 4.2. For all FO∃,∧-formulas φ and for all x, y and P ,Q, if x and
y are disjoint, then BINDxy 7→PQ(φ) ≡ BINDx 7→P (BINDy 7→Q(φ)).

A formula φ is clean if no free variable of φ also occurs bound in φ, and
φ does not contain two quantifiers for the same variable. Every FO-formula is
equivalent to a clean FO-formula, and all subformulas of a clean formula are also
clean. We now state two technical propositions, whose proofs can be found in
the appendix.

12 B. ten Cate, J. Comer

Proposition 4.3. For every clean FO∃,∧-formula φ, for every tuple of distinct
variables y = y1, . . . , yn (with each yi ∈ free(φ)), and for every tuple of unary
predicates P = P1, . . . , Pn, we have that(∧

i=1,...,n

Pi(yi)
)
|= φ→ BINDy 7→P (φ).

Proposition 4.4. For every clean FO∃,∧-formula φ(x, y) with y = y1, . . . , yn
distinct from x, and for every n-tuple of unary predicates P = P1, . . . , Pn not
occurring in φ, we have that

∃xφ(x, y) ≡ ∀P
((∧

i=1...n

Pi(yi)
)
→ ∃xBINDy 7→P (φ(x, y))

)
.

The following lemma enables the proof of Proposition 4.1.

Lemma 4.1. Let L be an FO-fragment which can express atomic formulas and
is closed under guarded quantification, conjunction, and unary implication. If L
can express a formula φ ∈ FO∃,∧ and all of its subformulas, then for all tuples
y of variables, we have that L can express BINDy 7→P (φ).

Proof. We show by strong induction on the complexity of clean FO∃,∧-formulas
φ that this proposition holds.

Base Case
Suppose φ is an atomic formula. Fix an arbitrary tuple y = y1 . . . , yn. Then

BINDy 7→P (φ) ≡ ∃y(φ ∧
∧

1≤i≤n

Pi(yi)),

which L can express by closure under conjunction and guarded quantification.

Inductive Step
Suppose inductively that, for all formulas ψ of lesser complexity than φ, and all
tuples z of variables, we have that L can express BINDz 7→P (ψ). Fix an arbitrary
tuple y of variables.

Suppose that φ = ψ1 ∧ ψ2. Since L can express φ and all of its subformulas,
it can also express ψ1, ψ2, and all of their subformulas. Then by the inductive
hypothesis, L can express BINDy 7→P (ψ1) and BINDy 7→P (ψ2). Then by closure
under conjunctions, L can express BINDy 7→P (ψ1) ∧ BINDy 7→P (ψ2), which is the
same as BINDy 7→P (φ) (cf. Definition 4.3).

Now suppose that φ(x, y) = ∃zψ(x, y, z), where the (possibly empty) tuple x
consists of all free variables of φ not in the tuple y. We need to show that L
can express BINDy 7→P (φ(x, y)), which is the same as ∃z(BINDy 7→P (ψ(x, y, z)))
(cf. Definition 4.3). Since L can express φ and all of its subformulas, it can also

Craig Interpolation for Decidable First-Order Fragments 13

express ψ and all of its subformulas. Then, by the inductive hypothesis, L can
express BINDy 7→P (ψ), whose free variables are those in the tuple xz, as well as
BINDxy 7→QP (ψ), whose only free variable is z. Since L is closed under conjunction
and guarded quantification, it follows that L can express

γ(x) := ∃z(G(x, z) ∧ BINDy 7→P (ψ)) and ∃z(z = z ∧ BINDxy 7→QP (ψ)),

where G is a fresh relation symbol not occurring in ψ. Then by closure under
unary implications, we have that L can also express

χ(x) :=
(∧
i

Qi(xi)
)
→ ∃z(z = z ∧ BINDxy 7→QP (ψ)).

Claim: γ(x) |= χ(x)

Proof of claim: By Proposition 4.2,

BINDxy 7→QP (ψ) ≡ BINDx 7→Q(BINDy 7→P (ψ)). (1)

Then by applying Proposition 4.3 and inverting the hypotheses, we have

BINDy 7→P (ψ) |=
(∧
i

Qi(xi)
)
→ BINDxy 7→QP (ψ).

From this, it follows (because z is distinct from xi variables) that

∃z(BINDy 7→P (ψ)) |=
(∧
i

Qi(xi)
)
→ ∃zBINDxy 7→QP (ψ),

and therefore γ(x) |= χ(x). This concludes the proof of the claim.

Since L can express both γ(x) and χ(x), we have by the Craig interpolation
property that L can express some Craig interpolant ϑ(x). Since G and the Qi
predicates do not occur in φ, they do not occur in ϑ(x), and therefore, the
following second-order implication is valid:

∃Gγ(x) |= ϑ(x) |= ∀Qχ(x).

It is easy to see that ∃Gγ(x) ≡ ∃zBINDy 7→P (ψ). Similarly, it follows from
Proposition 4.4 and equation (1) that ∀Qχ(x) ≡ ∃zBINDy 7→P (ψ). Therefore,
ϑ(x) ≡ ∃zBINDy 7→P (ψ). In particular, ∃zBINDy 7→P (ψ) is expressible in L. ⊓⊔

We are now ready to prove Proposition 4.1, restated below.

Proposition 4.1. Let L be a logic with CIP that can express atomic formulas,
guarded quantification, conjunction, and unary implication. Then FO∃,∧ ⪯ L.

Proof. By strong induction on the complexity of FO∃,∧-formulas. The base case
is immediate, since L can express all atomic formulas. For the inductive step, if
φ := ψ1∧ψ2, then by the inductive hypothesis, L can express ψ1 and ψ2, and so

14 B. ten Cate, J. Comer

by closure under conjunction, L can express φ. Now suppose φ(y) := ∃x(ψ(x, y)).
By the inductive hypothesis, together with closure under guarded quantification,
L can express

γ(y) := ∃x(G(x, y) ∧ ψ).

Furthermore, by Lemma 4.1, L can express BINDy 7→P (ψ), and therefore, by
closure under guarded quantification and unary implications, L can express

χ(y) :=
(∧
i

Pi(yi)
)
→ ∃x(x = x ∧ BINDy 7→P (ψ)).

Claim: γ(y) |= χ(y).

Proof of claim: It is clear that γ(y) |= ∃xψ. Furthermore, by Proposition 4.3,
ψ |=

(∧
i Pi(yi)

)
7→ BINDy 7→P (ψ), from which it follows that ∃xψ |= χ(y) (since

the variable x is distinct from y1, . . . , yn). Therefore, γ(y) |= χ(y).

Let ϑ(y) be an interpolant for γ(y) |= χ(y) in L. Since G and the predicates
in P do not occur in ψ, the following second-order entailments are valid:

∃G∃x(G(x, y) ∧ ψ) |= ϑ(y) |= ∀P ((
∧
i

Pi(yi)) → ∃xBINDy 7→P (ψ)).

It is easy to see that
∃G∃x(G(x, y) ∧ ψ) ≡ ∃xψ.

Furthermore, by Proposition 4.4,

ψ ≡ ∀P ((
∧
i

Pi(yi)) → BINDy 7→P (ψ)).

from which it follows (since x is distinct from y1, . . . , yn) that

∃xψ ≡ ∀P ((
∧
i

Pi(yi)) → ∃xBINDy 7→P (ψ)).

Therefore, ϑ(y) ≡ φ(y), and so we are done. ⊓⊔

Our main result follows easily from Proposition 4.1, the closure properties of
guarded logics, and the UCQ characterization of GNFO.

Theorem 4.1. Let L be a guarded logic with CIP. Then GNFO ⪯ L.

Proof. L can express self-guarded GFO-formulas, so it can express formulas of
the form ∃xβ, where β is an atomic formula. Then since L can express self-
guarded substitution, L can express guarded quantification. Furthermore, L can
express all self-guarded formulas of the form α ∧ ¬β, where α and β are atomic
formulas such that free(α) = free(β). Furthermore, for every formula φ express-
ible in L with free(φ) ⊆ free(α), α ∧ φ is a self-guarded formula. Thus by ex-
pressibility of self-guarded substitution, L can also express α ∧ ¬(α ∧ φ), which

Craig Interpolation for Decidable First-Order Fragments 15

is equivalent to α∧¬φ; hence L can express guarded negation. If L can express
φ, then by expressibility of guarded negation and disjunction, it can also express
the formula (x = x∧¬P (x))∨φ, which is equivalent to P (x) → φ. Hence L can
express unary implications. Therefore, by Proposition 4.1, L can express all for-
mulas in FO∃,∧. Then by expressibility of disjunction, L can express all unions of
conjunctive queries. The result then follows immediately from the UCQ-syntax
for GNFO, by closure under self-guarded substitution. ⊓⊔

5 Repairing Interpolation for FF

The fluted fragment (FL) [50] is an ordered logic, in which all occurrences of vari-
ables in atomic formulas and quantifiers must follow a fixed order. In the context
of ordered logics, we assume a fixed infinite sequence of variables X = ⟨xi⟩i∈Z+ .
A suffix n-atom is an atomic formula of the form R(xj , . . . , xn), where xj , . . . , xn
is a finite contiguous subsequence of X. FL is defined by the following recursion.

Definition 5.1. For each n ∈ N, define collections of formulas FLn as follows:

1. FLn contains all suffix n-atoms,
2. FLn is closed under Boolean combinations, and
3. If φ is in FLn+1, then ∃xn+1φ and ∀xn+1φ are in FLn.

We set FL =
⋃
n∈N FLn.

The forward fragment (FF), introduced in [6], is a syntactic generalization
of FL. We say that R(xj , . . . , xk) is an infix n-atom if xj , . . . , xn is a finite
contiguous subsequence of X and k ≤ n. FF is defined by the following recursion.

Definition 5.2. For each n ∈ N, define collections of formulas FFn as follows:

1. FFn contains all infix n-atoms,
2. FFn is closed under Boolean combinations, and
3. If φ is in FFn+1, then ∃xn+1φ and ∀xn+1φ are in FFn.

We set FF =
⋃
n∈N FFn.

In contrast to the other logics we have seen, FL and FF do not allow the
primitive equality symbol. It can be seen by a simple formula induction that
every formula in FFk can be expressed by a formula in FFn for every n > k; it
follows easily that FF can express arbitrary Boolean combinations of its formulas.
However, FL cannot: P (x1) and P (x2) are in FL, but P (x1) ∧ P (x2) is not
expressible in FL. Although FF contains formulas which are not in FL, it is
known that FF and FL are expressively equivalent at the level of sentences [7].
Furthermore, the satisfiability problems for FL and FF are decidable [47,7].

16 B. ten Cate, J. Comer

5.1 Natural Extensions of FF

Given a formula φ, we write gfv(φ) to denote the greatest n ∈ Z+ such that xn
occurs free in φ; if φ is a sentence, then we set gfv(φ) = 0. We define forward
logics to capture the notion of a natural extension of FF.

Definition 5.3. A forward logic is an abstract logic L such that

1. L can express all infix n-atoms for every n ∈ Z+,
2. L can express all Boolean combinations of its formulas, and
3. L can express ∃xnφ and ∀xnφ whenever L can express φ and n = gfv(φ).

We refer to the last property of a forward logic as expressibility of ordered quan-
tification. Clearly FF is a forward logic, and every forward logic extends FF.

5.2 Finding the Minimal Extension of FF with CIP

Unlike the other fragments we have seen, one peculiar property of FF is that
the logic is not closed under variable substitutions. This can be seen simply
by considering relational atoms: for a 3-ary relational symbol R, the formula
R(x1, x2, x3) is in FF, but the formula R(x3, x1, x2) is not. Before proving our
main theorem, we prove the following lemma asserting that whenever a formula
is expressible in a forward logic L satisfying CIP, the result of making arbitrary
substitutions for the free variables of the formula is also expressible in L.

Lemma 5.1. Let L be a forward logic satisfying CIP, and let φ(xi1 , . . . , xik) be
a formula of first-order logic expressible in L, where xi1 , . . . , xik is not necessarily
a contiguous subsequence of variables. Then for every map

π : {i1, . . . , ik} → Z+,

we have that L can also express φ(xπ(i1), . . . , xπ(ik)). In other words, L is closed
under renamings of free variables.

Proof. For brevity, let x = xi1 , . . . , xik , and let π(x) = xπ(i1), . . . , xπ(ik). Without
loss of generality, assume that i1 ≤ · · · ≤ ik (we can do this since the notation
φ(xi1 , . . . , xik) only indicates that the variables occur free, but says nothing
about where or in what order they occur in the formula). Since L can express
φ(x), it can evidently express the following formulas, by the definition of a
forward logic:

γ(x) :=
∧
m≤k

Gm(xim) ∧ ∀xi1 . . . ∀xik

 ∧
m≤k

Gm(xπ(im)) → φ(x)

χ(x) :=

∧
m≤k

Pm(xim) → ∃xi1 . . . ∃xik

φ(x) ∧ ∧
m≤k

Pm(xπ(im))

Craig Interpolation for Decidable First-Order Fragments 17

Clearly γ |= χ, and so there exists an interpolant ϑ. Hence

∃G1 . . . Gkγ |= ϑ |= ∀P1 . . . Pkχ

is a valid second-order entailment. Furthermore, it is easy to see that

∃G1 . . . Gkγ ≡ ∀P1 . . . Pkχ ≡ φ.

Therefore, φ(xπ(i1), . . . , xπ(ik)) is expressible in L. ⊓⊔

We now prove our main theorem, which follows easily from Lemma 5.1.

Theorem 5.1. Let L be a forward logic satisfying CIP. Then FO ⪯ L.

Proof. We proceed by formula induction on FO-formulas φ. For the base case,
clearly L can express all atomic FO-formulas by applying Lemma 5.1 to an
appropriate infix atom. For the inductive step, the Boolean cases are immediate
since L can express all Boolean combinations. Hence the only interesting case
is when φ := ∃xkψ for some formula ψ. By the inductive hypothesis, L can
express ψ. Applying Lemma 5.1, L can also express φ′, the result of substituting
xn+1 for all free occurrences of xk, where n = gfv(φ), and leaving all other
free variables the same. Then by expressibility of ordered quantification, L can
express ∃xn+1φ

′, which is equivalent to φ. ⊓⊔

6 Undecidability of Extensions of FO2 and FL with CIP

In Section 3, we showed that every strong extension of FO2 with CIP can express
all sentences of FO, and in Section 5, we showed that every forward logic with
CIP can express all formulas of FO. These results suggest the undecidability of
the satisfiability problems for such logics. In this section, we formalize this idea,
showing that extensions of FO2 and FL with CIP and satisfying very limited
expressive assumptions are undecidable. These results rely primarily on known
results on the undecidability of FO2 and FL with additional transitive relations.

Proposition 6.1. Every abstract logic L with CIP extending FO2 or FL can
express the following formulas:

ψ0(x1) := ∀x2∀x3(R(x1, x2) ∧R(x2, x3) → R(x1, x3)), and
ψ1 := ¬∀x1∀x2∀x3(R(x1, x2) ∧R(x2, x3) → R(x1, x3)).

The proof of Proposition 6.1 can be found in the appendix. We also need
two additional definitions. First, an effective translation from a logic L to a
logic L′ is a computable function which takes formula of φ ∈ L as input and
outputs an equivalent formula φ′ ∈ L′. Second, we say that a logic L has effective
conjunction if there is a computable function taking formulas φ,ψ ∈ L as input
and outputting a formula χ ∈ L which is equivalent to φ ∧ ψ.

18 B. ten Cate, J. Comer

Theorem 6.1. Let L be an extension of FL which satisfies CIP. Suppose fur-
ther that there is an effective translation from FL to L, and L has effective
conjunction. The satisfiability problem for L is undecidable if either

1. L can express ordered quantification, or
2. L can express negation.

Proof. Let χ be the sentence asserting the transitivity of the relation R. Since
L has CIP and extends FL, it can express both ψ0(x1) and ψ1 by Proposition
6.1. If L can express ordered quantification, it can express ∀x1ψ0(x1), which is
equivalent to χ. If L can express negation, then it can express ¬ψ1, which is
also equivalent to χ. Since L, as an abstract logic, can express χ and is closed
under predicate renamings, it can express that any number of binary relations
are transitive. Let χ1, χ2, and χ3 be sentences expressing transitivity of binary
relation symbols R1, R2, and R3, respectively. Let tr be an effective translation
from FL to L. Then a formula φ of FL with three designated transitive relations
is satisfiable if and only if tr(φ)∧χ1∧χ2∧χ3 is satisfiable. Since tr is computable
and L is effectively closed under conjunction, this reduction is computable. Since
the satisfiability problem for FL with three transitive relations is undecidable
[45], the satisfiability problem for L is undecidable. ⊓⊔

It is also known that satisfiability is undecidable for FO2-formulas with two
transitive relations [35]. Using this fact, along with Proposition 6.1, we obtain
the following theorem, by a similar proof to that of Theorem 6.1.

Theorem 6.2. Let L be an extension of FO2 which satisfies CIP. Suppose fur-
ther that there is an effective translation from FO2 to L, and L has effective
conjunction. The satisfiability problem for L is undecidable if either

1. L can express universal quantification, or
2. L can express negation.

We remark that all forward logics and strong extensions of FO2 with CIP,
assuming appropriate effective translations and effective conjunction, meet the
requirements of Theorems 6.1 and 6.2, and hence are undecidable.

7 Discussion

In the introduction, we mentioned several results indicating the failure of CIP
among many natural proper extension of FO. In [14], van Benthem points out
that there is a similar scarcity among FO-fragments as well. Our results in Sec-
tions 3 and 5 may be interpreted as additional confirmation of this observation.
Furthermore, one tends to study proper fragments of FO for their desirable com-
putational properties, and so our broader undecidability results show that CIP
fails for large swaths of decidable FO-fragments. However, there are a few no-
table fragments for which the determination of a minimal extension satisfying
CIP is still open, such as FL and the quantifier prefix fragments.

Craig Interpolation for Decidable First-Order Fragments 19

One limitation of our methodology and results is their dependence on a def-
inition of Craig interpolation which mandates the existence of interpolants be-
tween proper formulas, while many practical applications only require CIP for
sentences. Throughout this paper, we have established expressibility of a formula
ϑ in a logic L by induction (and by constructing two formulas φ and ψ such that
φ |= ψ and arguing that every interpolant is equivalent to ϑ). In general, this
method is difficult to apply unless free variables are allowed; it is not clear how
to apply this type of inductive argument if we were only concerned with the
existence of interpolants for sentences of the logic.

There are several well-studied properties strictly weaker than CIP. The ∆-
interpolation property (also known as Suslin-Kleene interpolation) holds for a
logic L if, whenever φ |= ψ, and (intuitively speaking) there is only one possible
interpolant ϑ up to logical equivalence for this entailment, then L contains a
formula equivalent to ϑ [5]. It is not hard to see that, unlike the Craig interpola-
tion property, every logic L has a unique extension, denoted ∆(L), satisfying the
∆-interpolation property. In fact, in our proofs we only rely on ∆-interpolation;
every application of the assumption that some abstract logic L satisfies CIP
yields a provably unique interpolant, up to logical equivalence. Therefore, all of
our results hold also when CIP is replaced by ∆-interpolation.

Two additional weakenings of CIP are the projective and non-projective Beth
definability properties. The projective Beth property states, roughly, that when-
ever a σ∪τ∪{R}-theory Σ implicitly defines a relation R in terms of the relations
in σ, then Σ entails an explicit definition of R in terms of σ (the non-projective
Beth property being the special case for τ = ∅). Many practical applications
of CIP in database theory and knowledge representation require only the pro-
jective Beth property. It is not immediately clear how to extend our method-
ology to a systematic study of the (projective) Beth property among decidable
FO-fragments. Indeed, GFO already satisfies the non-projective Beth property
[32]. Given their applications, an interesting avenue of future work is to map
the landscape of FO-fragments satisfying these properties. In the other direc-
tion, minimal extensions of logics with uniform interpolation (a strenghtening of
CIP) were studied in [24], although with limited results so far (cf. [24, Thm. 14]).
Some of the minimal extensions of PLTL fragments with CIP identified in [27],
however, do satisfy uniform interpolation.

Acknowledgements. We thank Jean Jung, Frank Wolter, and Malvin Gat-
tinger for feedback on an earlier draft, and we thank Ian Pratt-Hartmann and
Michael Benedikt for helpful remarks during a related workshop presentation.
Balder ten Cate is supported by EU Horizon 2020 grant MSCA-101031081.

References

1. Andréka, H., Németi, I., van Benthem, J.: Modal languages and bounded fragments
of predicate logic. Journal of Philosophical Logic 27 (06 1998). https://doi.org/
10.1023/A:1004275029985

https://doi.org/10.1023/A:1004275029985
https://doi.org/10.1023/A:1004275029985
https://doi.org/10.1023/A:1004275029985
https://doi.org/10.1023/A:1004275029985

20 B. ten Cate, J. Comer

2. Areces, C., Blackburn, P., Marx, M.: Repairing the interpolation theorem in quan-
tified modal logic. Annals of Pure and Applied Logic 124(1), 287–299 (2003).
https://doi.org/10.1016/S0168-0072(03)00059-9

3. Bárány, V., Benedikt, M., ten Cate, B.: Rewriting guarded negation queries. In:
Proceedings of MFCS 2013. pp. 98–110. Springer Berlin Heidelberg, Berlin, Hei-
delberg (2013)

4. Barany, V., ten Cate, B., Segoufin, L.: Guarded negation. Journal of the ACM
62(3), 22.1–22:26 (2015)

5. Barwise, J., Feferman, S. (eds.): Model-Theoretic Logics, Perspectives in Logic,
vol. 8. Cambridge University Press (2017)

6. Bednarczyk, B.: Exploiting forwardness: Satisfiability and query-entailment in
forward guarded fragment. In: Logics in Artificial Intelligence: 17th European
Conference, JELIA 2021, Virtual Event, May 17–20, 2021, Proceedings. p.
179–193. Springer-Verlag, Berlin, Heidelberg (2021). https://doi.org/10.1007/
978-3-030-75775-5_13

7. Bednarczyk, B., Jaakkola, R.: Towards a Model Theory of Ordered Logics: Ex-
pressivity and Interpolation. In: Szeider, S., Ganian, R., Silva, A. (eds.) 47th In-
ternational Symposium on Mathematical Foundations of Computer Science (MFCS
2022). Leibniz International Proceedings in Informatics (LIPIcs), vol. 241, pp. 15:1–
15:14. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany
(2022). https://doi.org/10.4230/LIPIcs.MFCS.2022.15

8. Benedikt, M., Bourhis, P., Boom, M.V.: Definability and Interpolation within De-
cidable Fixpoint Logics. Logical Methods in Computer Science Volume 15, Issue
3 (Sep 2019). https://doi.org/10.23638/LMCS-15(3:29)2019

9. Benedikt, M., ten Cate, B., Boom, M.V.: Interpolation with decidable fixpoint
logics. In: LICS. pp. 378–389 (2015). https://doi.org/10.1109/LICS.2015.43

10. Benedikt, M., ten Cate, B., Tsamoura, E.: Generating plans from proofs. ACM
Trans. Database Syst. 40(4), 22:1–22:45 (2016). https://doi.org/10.1145/
2847523

11. Benedikt, M., Cate, B.ten., Boom, M.V.: Effective interpolation and preservation
in guarded logics. ACM Trans. Comput. Logic 17(2) (2015). https://doi.org/
10.1145/2814570

12. Benedikt, M., Leblay, J., ten Cate, B., Tsamoura, E.: Generating plans from proofs
: the interpolation-based approach to query reformulation. Synthesis Lectures on
Data Management, Morgan & Claypool (2016)

13. van Benthem, J.: A new modal lindström theorem. Logica Universalis 1(1), 125–
138 (2007). https://doi.org/10.1007/s11787-006-0006-3

14. van Benthem, J.: The many faces of interpolation. Synthese 164(3), 451–460
(2008), http://www.jstor.org/stable/40271083

15. van Benthem, J., ten Cate, B., Väänänen, J.A.: Lindström theorems for fragments
of first-order logic. Log. Methods Comput. Sci. 5(3) (2009), http://arxiv.org/
abs/0905.3668

16. Börger, E., Grädel, E., Gurevich, Y.: The Classical Decision Problem. Perspectives
in Mathematical Logic, Springer (1997)

17. Caicedo, X.: Failure of interpolation for quantifiers of monadic type. In: Di Prisco,
C.A. (ed.) Methods in Mathematical Logic. pp. 1–12. Springer Berlin Heidelberg,
Berlin, Heidelberg (1985)

18. Calvanese, D., Ghilardi, S., Gianola, A., Montali, M., Rivkin, A.: Combined covers
and beth definability. In: Proceedings of the 10th International Joint Conference on
Automated Reasoning, Part I, IJCAR 2020. pp. 181–200. Springer (2020). https:
//doi.org/10.1007/978-3-030-51074-9_11

https://doi.org/10.1016/S0168-0072(03)00059-9
https://doi.org/10.1016/S0168-0072(03)00059-9
https://doi.org/10.1007/978-3-030-75775-5_13
https://doi.org/10.1007/978-3-030-75775-5_13
https://doi.org/10.1007/978-3-030-75775-5_13
https://doi.org/10.1007/978-3-030-75775-5_13
https://doi.org/10.4230/LIPIcs.MFCS.2022.15
https://doi.org/10.4230/LIPIcs.MFCS.2022.15
https://doi.org/10.23638/LMCS-15(3:29)2019
https://doi.org/10.23638/LMCS-15(3:29)2019
https://doi.org/10.1109/LICS.2015.43
https://doi.org/10.1109/LICS.2015.43
https://doi.org/10.1145/2847523
https://doi.org/10.1145/2847523
https://doi.org/10.1145/2847523
https://doi.org/10.1145/2847523
https://doi.org/10.1145/2814570
https://doi.org/10.1145/2814570
https://doi.org/10.1145/2814570
https://doi.org/10.1145/2814570
https://doi.org/10.1007/s11787-006-0006-3
https://doi.org/10.1007/s11787-006-0006-3
http://www.jstor.org/stable/40271083
http://arxiv.org/abs/0905.3668
http://arxiv.org/abs/0905.3668
https://doi.org/10.1007/978-3-030-51074-9_11
https://doi.org/10.1007/978-3-030-51074-9_11
https://doi.org/10.1007/978-3-030-51074-9_11
https://doi.org/10.1007/978-3-030-51074-9_11

Craig Interpolation for Decidable First-Order Fragments 21

19. ten Cate, B.: Interpolation for extended modal languages. The Journal of Symbolic
Logic 70(1), 223–234 (2005), http://www.jstor.org/stable/27588355

20. ten Cate, B., Franconi, E., Seylan, I.: Beth definability in expressive description
logics. J. Artif. Int. Res. 48(1), 347–414 (oct 2013)

21. ten Cate, B., Segoufin, L.: Unary negation. Logical Methods in Computer Science
Volume 9, Issue 3 (Sep 2013). https://doi.org/10.2168/LMCS-9(3:25)2013

22. Comer, S.D.: Classes without the amalgamation property. Pacific Journal of Math-
ematics 28, 309–318 (1969)

23. Craig, W.: Three uses of the herbrand-gentzen theorem in relating model theory
and proof theory. Journal of Symbolic Logic 22(3), 269–285 (1957). https://doi.
org/10.2307/2963594

24. D’Agostino, G., Lenzi, G., French, T.: µ-programs, uniform interpolation and
bisimulation quantifiers for modal logics. Journal of Applied Non-Classical Log-
ics 16(3-4), 297–309 (2006). https://doi.org/10.3166/jancl.16.297-309

25. Friedman, H.: Beth’s theorem in cardinality logics. Israel Journal of Mathematics
14(2), 205–212 (1973)

26. Garcá-Matos, M.: Abstract model theory without negation. Ph.D. thesis, Univer-
sity of Helsinki (2005)

27. Gheerbrant, A., ten Cate, B.: Craig interpolation for linear temporal languages.
In: Grädel, E., Kahle, R. (eds.) Computer Science Logic. pp. 287–301. Springer
Berlin Heidelberg, Berlin, Heidelberg (2009)

28. Graedel, E., Otto, M., Rosen, E.: Two-variable logic with counting is decidable. In:
Proceedings of LICS 1997. p. 306 (1997)

29. Grädel, E.: On the restraining power of guards. The Journal of Symbolic Logic
64(4), 1719–1742 (1999), http://www.jstor.org/stable/2586808

30. Hoder, K., Holzer, A., Kovács, L., Voronkov, A.: Vinter: A Vampire-based tool
for interpolation. In: Jhala, R., Igarashi, A. (eds.) Programming Languages and
Systems - 10th Asian Symposium, APLAS 2012, Kyoto, Japan, December 11-13,
2012. Proceedings. Lecture Notes in Computer Science, vol. 7705, pp. 148–156.
Springer (2012). https://doi.org/10.1007/978-3-642-35182-2_11

31. Hoogland, E.: Definability and interpolation: model-theoretic investigations. Ph.D.
thesis, University of Amsterdam (2000)

32. Hoogland, E., Marx, M.: Interpolation and definability in guarded fragments. Stu-
dia Logica 70(3), 373–409 (2002), http://www.jstor.org/stable/20016403

33. Hustadt, U., Schmidt, R., Georgieva, L.: A survey of decidable first-order fragments
and description logics. Journal on Relational Methods in Computer Science 1, 251–
276 (01 2004)

34. Jung, J.C., Wolter, F.: Living without beth and craig: Definitions and interpolants
in the guarded and two-variable fragments. In: Proceedings of LICS 2021. pp. 1–14.
IEEE Computer Society (jul 2021). https://doi.org/10.1109/LICS52264.2021.
9470585

35. Kieroński, E.: Results on the guarded fragment with equivalence or transitive rela-
tions. In: Computer Science Logic. Lecture Notes in Computer Science, vol. 3634,
pp. 309–324. Springer Verlag (2005)

36. Koopmann, P., Schmidt, R.A.: Uniform interpolation and forgetting for ALC on-
tologies with ABoxes. In: Proceedings of the 29th AAAI Conference on Artificial
Intelligence, AAAI 2015. pp. 175–181. AAAI Press (2015), http://www.aaai.org/
ocs/index.php/AAAI/AAAI15/paper/view/9981

37. Lindström, P.: On extensions of elementary logic. Theoria 35(1) (1969)

http://www.jstor.org/stable/27588355
https://doi.org/10.2168/LMCS-9(3:25)2013
https://doi.org/10.2168/LMCS-9(3:25)2013
https://doi.org/10.2307/2963594
https://doi.org/10.2307/2963594
https://doi.org/10.2307/2963594
https://doi.org/10.2307/2963594
https://doi.org/10.3166/jancl.16.297-309
https://doi.org/10.3166/jancl.16.297-309
http://www.jstor.org/stable/2586808
https://doi.org/10.1007/978-3-642-35182-2_11
https://doi.org/10.1007/978-3-642-35182-2_11
http://www.jstor.org/stable/20016403
https://doi.org/10.1109/LICS52264.2021.9470585
https://doi.org/10.1109/LICS52264.2021.9470585
https://doi.org/10.1109/LICS52264.2021.9470585
https://doi.org/10.1109/LICS52264.2021.9470585
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9981
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9981

22 B. ten Cate, J. Comer

38. Lutz, C., Wolter, F.: Foundations for uniform interpolation and forgetting in ex-
pressive description logics. In: Proceedings of the 22nd International Joint Con-
ference on Artificial Intelligence, IJCAI 2011. pp. 989–995. IJCAI/AAAI (2011).
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-170

39. Löwenheim, L.: Über möglichkeiten im relativkalkül. Mathematische Annalen 76,
447–470 (1915), http://eudml.org/doc/158703

40. McMillan, K.L.: Interpolation and model checking. In: Clarke, E.M., Henzinger,
T.A., Veith, H., Bloem, R. (eds.) Handbook of Model Checking, pp. 421–446.
Springer (2018). https://doi.org/10.1007/978-3-319-10575-8_14

41. Mortimer, M.: On languages with two variables. Math. Log. Q. 21, 135–140 (1975)

42. Otto, M.: An interpolation theorem. The Bulletin of Symbolic Logic 6(4), 447–462
(2000), http://www.jstor.org/stable/420966

43. Pratt-Hartman, I., Szwast, W., Tendera, L.: The fluted fragment revisited. The
Journal of Symbolic Logic 84(3), 1020–1048 (2019). https://doi.org/10.1017/
jsl.2019.33

44. Pratt-Hartmann, I., Szwast, W., Tendera, L.: Quine’s fluted fragment is non-
elementary. In: Regnier, L., Talbot, J. (eds.) 25th EACSL Annual Conference on
Computer Science Logic. 25th EACSL Annual Conference on Computer Science
Logic (CSL 2016), Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik (Jun 2016).
https://doi.org/10.4230/LIPIcs.CSL.2016.39

45. Pratt-Hartmann, I., Tendera, L.: The fluted fragment with transitive relations.
Annals of Pure and Applied Logic 173(1), 103042 (2022). https://doi.org/10.
1016/j.apal.2021.103042

46. Purdy, W.C.: Decidability of Fluted Logic with Identity. Notre Dame Jour-
nal of Formal Logic 37(1), 84 – 104 (1996). https://doi.org/10.1305/ndjfl/
1040067318

47. Purdy, W.C.: Fluted formulas and the limits of decidability. The Journal of Sym-
bolic Logic 61(2), 608–620 (1996). https://doi.org/10.2307/2275678

48. Purdy, W.C.: Quine’s ‘limits of decision’. The Journal of Symbolic Logic 64(4),
1439–1466 (1999). https://doi.org/10.2307/2586789

49. Purdy, W.C.: Complexity and nicety of fluted logic. Studia Logica 71, 177–198
(2002)

50. Quine, W.V.: On the limits of decision. 14th International Congress for Philosophy
3, 57–62 (1969)

51. Skolem, T.: Logisch-Kombinatorische Untersuchungen über die Erfüllbarkeit oder
Bewiesbarkeit mathematischer Sätze nebst einem Theorem über dichte Mengen. I.
Matematisk-naturvidenskabelig Klasse 4, 1-36, Videnskapsselskapet Skrifter (1920)

52. Toman, D., Weddell, G.E.: Fundamentals of Physical Design and Query Compi-
lation. Synthesis Lectures on Data Management, Morgan & Claypool Publishers
(2011)

53. Väänänen, J.: The craig interpolation theorem in abstract model theory. Synthese
164(3), 401–420 (2008)

54. Vardi, M.Y.: Why is modal logic so robustly decidable? In: Immerman, N., Kolaitis,
P.G. (eds.) Descriptive Complexity and Finite Models. DIMACS, vol. 31, pp. 149–
183 (1996). https://doi.org/10.1090/dimacs/031/05

https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-170
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-170
http://eudml.org/doc/158703
https://doi.org/10.1007/978-3-319-10575-8_14
https://doi.org/10.1007/978-3-319-10575-8_14
http://www.jstor.org/stable/420966
https://doi.org/10.1017/jsl.2019.33
https://doi.org/10.1017/jsl.2019.33
https://doi.org/10.1017/jsl.2019.33
https://doi.org/10.1017/jsl.2019.33
https://doi.org/10.4230/LIPIcs.CSL.2016.39
https://doi.org/10.4230/LIPIcs.CSL.2016.39
https://doi.org/10.1016/j.apal.2021.103042
https://doi.org/10.1016/j.apal.2021.103042
https://doi.org/10.1016/j.apal.2021.103042
https://doi.org/10.1016/j.apal.2021.103042
https://doi.org/10.1305/ndjfl/1040067318
https://doi.org/10.1305/ndjfl/1040067318
https://doi.org/10.1305/ndjfl/1040067318
https://doi.org/10.1305/ndjfl/1040067318
https://doi.org/10.2307/2275678
https://doi.org/10.2307/2275678
https://doi.org/10.2307/2586789
https://doi.org/10.2307/2586789
https://doi.org/10.1090/dimacs/031/05
https://doi.org/10.1090/dimacs/031/05

Craig Interpolation for Decidable First-Order Fragments 23

8 Appendix

Proof of Proposition 4.3

Proposition 4.3. For every clean FO∃,∧-formula φ, for every tuple of distinct
variables y = y1, . . . , yn (with each yi ∈ free(φ)), and for every tuple of unary
predicates P = P1, . . . , Pn, we have that(∧

i=1,...,n

Pi(yi)
)
|= φ→ BINDy 7→P (φ).

Proof. The proof is by induction on φ. For the base case, suppose that φ is
an atomic formula. Then if M, g |=

∧
i=1...n Pi(yi) and M, g |= φ, then it is

immediate from the definition of BIND that M, g |= BINDy 7→P (φ). For the in-
ductive step, suppose that, for every model M and variable assignment g, if
M, g |=

∧
i=1...n Pi(yi) and M, g |= φ then M, g |= BINDy 7→P (φ). The case

of conjunction is trivial by the inductive hypothesis and the fact that BIND
commutes with conjunction. Finally, suppose that φ := ∃zψ. By the inductive
hypothesis, we have that(∧

i=1,...,n

Pi(yi)
)
|= ψ → BINDy 7→P (ψ).

Suppose that M, g |=
∧
i=1,...,n Pi(yi) and M, g |= ∃zψ. Then there exists some

a ∈M such thatM, g[z/a] |= ψ, and so by the inductive assumption,M, g[z/a] |=
BINDy 7→P (ψ). Then because φ is clean, we have that z ̸∈ {y1, . . . , yn}, and so
M, g |= ∃zBINDy 7→P (ψ).

Proof of Proposition 4.4

Proposition 4.4. For every clean FO∃,∧-formula φ(x, y) with y = y1, . . . , yn
distinct from x, and for every n-tuple of unary predicates P = P1, . . . , Pn not
occurring in φ, we have that

∃xφ(x, y) ≡ ∀P
((∧

i=1...n

Pi(yi)
)
→ ∃xBINDy 7→P (φ(x, y))

)
.

Proof. For the left-to-right direction, suppose that M, g |= ∃xφ(x, y) and M ′ is
an expansion of M such that M ′ |=

∧
i=1...n Pi(yi). Then M ′, g[x/b] |= φ(x, y)∧∧

i=1...n Pi(yi) for some b ∈M . Then, by Proposition 4.3, we have

M ′, g[x/b] |= BINDy 7→P (φ(x, y)),

and hence M ′, g |= ∃xBINDy 7→P (φ(x, y)).
For the reverse direction, suppose that

M, g |= ∀P (
∧
i

Pi(yi) → ∃xBINDy 7→P (φ(x, y))).

24 B. ten Cate, J. Comer

Let M ′ be the expansion of the structure M in which each unary predicate
symbol Pi is interpreted as {g(yi)}. Then, by the semantics of second-order
quantifiers, we have that M ′, g |= ∃xBINDy 7→P (φ(x, y)), and hence M ′, g[x/b] |=
BINDy 7→P (φ(x, y)) for some b ∈ M . To complete the proof, it suffices to show
that M ′, g[x/b] |= φ(x, y) (since this implies that also M, g[x/b] |= φ(x, y)).

For every subformula containing a bound occurrence of a variable yi ∈ y, we
have that every witness for that variable yi must also be in Pi (by construction
of BINDy 7→P (φ(x, y)) and the assumption that φ(x, y) is clean). Since each Pi
is a singleton, this implies that each witness for yi in each subformula is g(yi).
It follows that M, g[y′/a′] |= α for each atomic formula α occurring in φ(x, y),
where y′ is the tuple of variables of y occurring in α. By a simple subformula
induction, we then obtain that M |= φ(b, a), completing the proof. ⊓⊔

Proof of Proposition 6.1

Proposition 6.1. Every abstract logic L with CIP extending FO2 or FL can
express the following formulas:

ψ0(x1) := ∀x2∀x3(R(x1, x2) ∧R(x2, x3) → R(x1, x3)), and
ψ1 := ¬∀x1∀x2∀x3(R(x1, x2) ∧R(x2, x3) → R(x1, x3)).

Proof. Consider the following formulas of FL:

γ0(x1) := ∀x2(R(x1, x2) →
∀x3(R(x2, x3) → G(x3)) ∧ ∀x2(G(x2) → R(x1, x2))),

γ1(x1) := ∃x2(R(x1, x2) ∧ ∃x3(R(x2, x3) ∧ P (x3))) → ∃x2(R(x1, x2) ∧ P (x2)).

We also define the following sentences of FL:

δ0 :=∀x1(G1(x1) → ∀x2(G2(x2) → ¬R(x1, x2)))
∧ ∃x1(G1(x1) ∧ ∃x2(R(x1, x2) ∧ ∃x3(R(x2, x3) ∧G2(x3)))),

δ1 :=∃x1(∀x2(P (x2) ↔ ¬R(x1, x2)) →
∃x2(R(x1, x2) ∧ ∃x3(R(x2, x3) ∧ P (x3)))).

With simple variable substitutions, we can turn γ0 and γ1 into formulas of FO2:

γ′0(x) := ∀y(R(x, y) → ∀x(R(y, x) → G(x)) ∧ ∀y(G(y) → R(x, y))),

γ′1(x) := ∃y(R(x, y) ∧ ∃x(R(y, x) ∧ P (x))) → ∃y(R(x, y) ∧ P (y)).

Similarly, we can turn δ0 and δ1 into sentences of FO2:

δ′0 :=∀x(G1(x) → ∀y(G2(y) → ¬R(x, y)))
∧ ∃x(G1(x) ∧ ∃y(R(x, y) ∧ ∃x(R(y, x) ∧G2(x)))),

δ′1 :=∃x(∀y(P (x) ↔ ¬R(x, y)) →
∃y(R(x, y) ∧ ∃x(R(y, x) ∧ P (x)))).

It is a simple exercise in FO-semantics to see that γ0 |= γ1 and δ0 |= δ1. Since
we assumed that L has CIP, the following claims complete the argument.

Craig Interpolation for Decidable First-Order Fragments 25

Claim. ψ0 is the unique interpolant of γ0 and γ1.

Proof. Let ϑ(x1) be an L-interpolant, so that γ0 |= ϑ |= γ1; then ∃Gγ0 |= ϑ |=
∀Pγ1 is also a valid second-order entailment. To complete the proof, we need
to show that ∃Sγ0 ≡ ψ0 and ∀Pγ1 ≡ ψ0. To see that ψ0 |= ∃Sγ0, observe that
if M, g |= ψ0, then M ′, g |= γ0, where M ′ is the expansion of M in which S is
interpreted as the singleton set {g(x0)}. If M, g |= ∀Pγ1, then M ′, g |= γ1, where
M ′ is the expansion of M in which S is interpreted as the singleton set {g(x0)};
hence M ′, g |= ψ0, and so M, g |= ψ0. Thus we have that ψ0 |= ∃Sγ0 |= ϑ |=
∀Pγ1 |= ψ0; in particular, we have that ϑ ≡ ψ0, which completes the proof.

Claim. ψ1 is the unique interpolant of δ0 and δ1.

Proof. Let ϑ(x1) be an L-interpolant, so that δ0 |= ϑ |= δ1; then ∃G1G2δ0 |=
ϑ |= ∀Pδ1 is also a valid second-order entailment. To complete the proof, we
need to show that ∃G1∃G2δ0 ≡ ψ1 and ∀Pδ1 ≡ ψ0. To see that ψ1 |= ∃G1∃G2δ0,
observe that if that M, g |= ψ1, then M ′, g |= δ0, where M ′ is the expansion of
M in which G1 and G2 are interpreted as singleton sets containing the witnesses
for the first-order existential quantifiers in ψ1. If M, g |= ∀Pδ1, then M ′, g |= δ1,
where M ′ is the expansion of M in which P is interpreted as the set of elements
in a ∈ dom(M) such that RM (g(x1), a) does not hold. It then follows easily that
M |= ψ1.

	Craig Interpolation for Decidable First-Order Fragments

