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Abstract

A famous result due to Lovász states that two finite relational structures M and N
are isomorphic if, and only if, for all finite relational structures T , the number of
homomorphisms from T to M is equal to the number of homomorphisms from T to
N . Since first-order logic (FO) can describe finite structures up to isomorphism, this
can be interpreted as a characterization of FO-equivalence via homomorphism-count
indistinguishability with respect to the class of finite structures. We identify classes of
labeled transition systems (LTSs) such that homomorphism-count indistinguishability
with respect to these classes, where “counting” is done within an appropriate semiring
structure, captures equivalence with respect to positive-existential modal logic, graded
modal logic, and hybrid logic, as well as the extensions of these logics with either
backward or global modalities. Our positive results apply not only to finite structures,
but also to certain well-behaved infinite structures. We also show that equivalence
with respect to positive modal logic and equivalence with respect to the basic modal
language are not captured by homomorphism-count indistinguishability with respect
to any class of LTSs, regardless of which semiring is used for counting.

Keywords: Homomorphism, Semiring, Graded Modal Logic, Hybrid Logic.

1 Introduction

Lovász’s theorem [24] grew out of the study of a fundamental computational
problem in graph theory and complexity theory: the graph isomorphism prob-
lem. This problem is significant because it is not known to be solvable in
polynomial time, but is also not known to be NP-complete. In fact, recent
work has shown that the problem can be resolved in quasipolynomial time [6],
and it is considered to be a potential member of the conjectured class of NP-
intermediate problems, which exist if and only if P ̸= NP [22]. Due to the high
running time of known exact algorithms for the problem, and the difficulty in
determining a lower bound on its complexity, researchers have turned toward
the study of heuristic algorithms, such as the color-refinement algorithm, which
can distinguish many (but not all) non-isomorphic graphs [7].

The Lovász theorem relates homomorphisms to isomorphisms; while orig-
inally stated for structures with a single relation of arbitrary finite arity, it
will be convenient for our purposes to consider its generalization to arbitrary
finite relational structures. A map between two finite relational structures is
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a homomorphism if, whenever a tuple of elements in the first structure occurs
in some relation, then the image of that tuple must also occur in the corre-
sponding relation in the second structure. Given finite structures M and N ,
we write homN(N,M) to denote the number of homomorphisms from N to
M . Given a class C of finite structures and a fixed finite structure M , we can
form the homomorphism count vector of M with respect to the class C: the
sequence homN(C,M) = ⟨homN(A,M)⟩A∈C . Using this notation, Lovász’s re-
sult in [24] can be stated as follows: two finite relational structures M and N
are isomorphic if and only if homN(M,M) = homN(M, N), where M is the
class of all finite structures. Informally, this says that homomorphism count
indistinguishability with respect to M captures isomorphism between finite
structures.

Every class of finite structures C induces an equivalence relation ∼C on fi-
nite structures defined by M ∼C N if and only if homN(C,M) = homN(C, N).
Dvořák initiated the study of such equivalence relations for proper subclasses
C of M, showing that two undirected graphs are homomorphism count indis-
tinguishable with respect to the class of trees if and only if they are indistin-
guishable by the color-refinement algorithm [16]. This was later proven inde-
pendently by Dell et. al. [15]. In fact, Dvořák and Dell et. al. proved a more
general result: homomorphism count indistinguishability with respect to graphs
of tree-width at most k captures indistinguishability by the k-dimensional
Weisfeiler-Leman (WL) method, where the color-refinement algorithm is the
special case for k = 1.

Given two graphs with adjacency matrices A and B, an isomorphism be-
tween them can be interpreted as a permutation matrix X such that AX = B.
If we drop the requirement that X contain only binary values, allowing instead
positive rational number entries such that each column and row sums to 1, then
X is a fractional isomorphism [27]. The existence of a fractional isomorphism
between two graphs is strictly weaker than the existence of an isomorphism, and
so induces a less-refined equivalence relation on the class of all graphs. Frac-
tional isomorphisms are an inherently linear algebraic notion, and yet it has
also been shown that two graphs are indistinguishable by the color-refinement
algorithm if and only if a fractional isomorphism exists between them [31,32].

The two-variable fragment (FO2) is the fragment of first-order logic in which
only two variables are allowed. An important extension of FO2 is the two-
variable fragment with counting quantifiers (C2), which contains quantifiers of
the form ∃≥k, where ∃≥kxφ(x) asserts the existence of at least k elements
satisfying φ(x). C2 is an expressive, but decidable, fragment of FO [19]. A
theorem of Cai et. al. shows that two graphs are C2-equivalent if and only if
they are indistinguishable by the the color-refinement algorithm [11]. In fact,
they show that two graphs are invariant under the k-variable fragment with
counting quantifiers (Ck), which naturally generalizes C2, if and only if they
are indistinguishable by the (k − 1)-dimensional WL method (for k ≥ 2).

In artificial intelligence, graph neural networks (GNNs) are a type of ma-
chine learning architecture which have found numerous applications in the so-
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cial and physical sciences [33,34]. In [25], Morris et. al. showed that GNNs can
distinguish precisely those graphs distinguishable by the color-refinement algo-
rithm. Inspired by the observation that C2 and the color-refinement algorithm
can be generalized to Ck and the k-dimensional WL method, respectively, the
authors proposed k-dimensional GNNs. They showed that these k-dimensional
GNNs can distinguish non-isomorphic graphs with the same expressive power
as the k-dimensional WL method.

We have now seen that several seemingly distinct notions – the color-
refinement algorithm from graph theory, fractional isomorphism from linear
algebra, the two-variable fragment with counting quantifiers from logic, and
graph neural networks from machine learning – all induce the same equiva-
lence class on the class of undirected graphs. We have also seen that similar
equivalences also hold for the natural generalizations of these notions. Further-
more, they are all undergirded by the same phenomenon: the expressive power
of homomorphism count vectors restricted to particular classes of structures.

Due to these connections, Atserias et. al. set out to study which equivalence
relations on graphs can be expressed by restricting homomorphism vectors to
some fixed class of graphs [5]. In particular, they provide negative results show-
ing that chromatic equivalence and FOk-equivalence cannot be captured by
homomorphism count indistinguishability with respect to any class of graphs.
They also introduce a more general perspective, which we also take, in which
“counting” can be performed in an arbitrary semiring.

Main Contributions. This paper aims to characterize logical equivalence
with respect to various modal languages via homomorphism count indistin-
guishability with respect to appropriate classes of labeled transition systems
(LTSs). The main results are as follows.

(i) Positive-existential modal equivalence is captured by homomorphism
count indistinguishability over the Boolean semiring with respect to the
class of trees. The extended languages with backward and global modal-
ities are captured by the classes of connected, acyclic LTSs and forests,
respectively, over the Boolean semiring.

(ii) Graded modal equivalence is captured by homomorphism count indistin-
guishability over the natural semiring with respect to the class of trees.
The extended languages with backward and global modalities are captured
by the classes of connected, acyclic LTSs and forests, respectively, over the
natural semiring.

(iii) Equivalence with respect to hybrid logic is captured by homomorphism
count indistinguishability over the natural semiring with respect to the
class of point-generated LTSs. The extended language with backward
modalities is captured by the class of connected LTSs.

(iv) Equivalence of LTSs with respect to positive modal logic and the basic
modal language cannot be captured by restricting the left homomorphism
count vector over any semiring to any class of LTSs.
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These results capture equivalence relations even over certain infinite struc-
tures, which we specify in the respective sections. The negative result (iv) is
similar in spirit to the negative results from [5] mentioned above, but is more
general in that it rules out homomorphism count indistinguishability charac-
terizations for arbitrary semirings. Some of these results were obtained in the
author’s MSc thesis [13].

2 Preliminaries

We assume familiarity with the syntax and semantics of first-order logic (FO).
We use σ and τ to denote first-order signatures, and we work primarily over
modal signatures of the form σ = Prop∪A, where Prop is a finite set of unary
predicate symbols (called proposition letters) and A is a finite set of binary
predicate symbols (called actions or transitions). All of the modal languages
discussed in this paper will be variants of the basic (multi)modal language ML,
which is defined by the following recursive syntax:

φ := p | φ ∧ φ | φ ∨ φ | ¬φ | 3iφ | □iφ,

where p ∈ Prop and 3i,□i are modalities for the action Ri ∈ A. We define the
semantics of ML by the well-known standard translation of ML to FO:

STx(p) := P (x),

STx(φ ∧ ψ) := STx(φ) ∧ STx(ψ),
STx(φ ∨ ψ) := STx(φ) ∨ STx(ψ),

STx(¬φ) := ¬STx(φ),
STx(3iφ) := ∃y(Ri(x, y) ∧ STy(φ)),
STx(□iφ) := ∀y(Ri(x, y) → STy(φ)).

We write M,N,S, T to denote (possibly infinite) first-order structures and
a, b, c, d,m, n, s, t to denote elements of structures. Given a relation symbol F ,
we write FM to denote the interpretation of F in the structure M . For a k-ary
relation symbol F , we say that FM (m1, . . . ,mk) holds if the tuple ⟨m1, . . . ,mk⟩
is in FM , in which case we say that FM (m1, . . . ,mk) is a fact of M . Given
a fact f , we write el(f) for the set of elements occurring in f . A pointed
structure, denoted (M,a1, . . . , an), is a first-order structure M together with
a tuple of distinguished elements a1, . . . , an ∈ dom(M). A labeled transition
system (LTS) is a pointed structure Ma = (M,a) over a modal signature with
exactly one distinguished element. We write that Ma is a σ-LTS to emphasize
that it is defined over the modal signature σ. We refer to elements of dom(M)
as states. Given a σ-LTS M and a state m ∈ dom(M), we define

SuccMσ [m] := {n ∈M | RM (m,n) holds for some R ∈ σ}, and
PredMσ [m] := {n ∈M | RM (n,m) holds for some R ∈ σ}

to be the sets of σ-successors and σ-predecessors, respectively, of m in M .
For R ∈ σ, we also write SuccMR [m] and PredMR [m] for the successors (resp.
predecessors) of m in M along an R transition. A σ-LTS Ma is image-finite if
SuccMσ [m] is finite for each m ∈ dom(M), and degree-finite if both SuccMσ [m]
and PredMσ [m] are finite for eachm ∈ dom(M). We also write λMσ (m) to denote
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the set of proposition letters p ∈ σ such that Mm |= p. Each modal language L
discussed in this paper has an associated satisfaction relation |= between LTSs
and formulas of L. If two σ-LTSs Ma and Nb satisfy the same formulas of L
over signature σ, then we write Ma ≡σ

L Nb.

Homomorphism Count Vectors. Let (M,a) and (N, b) be pointed σ-
structures, where a = a1, . . . , an ∈ dom(M) and b = b1, . . . , bn ∈ dom(N).
A map h : dom(M) → dom(N) is a homomorphism from (M,a) to (N, b) if
ai 7→ bi for each i ≤ n and, for each k-ary relation symbol R ∈ σ, we have
that RN (h(s1), . . . , h(sk)) holds whenever RM (s1, . . . , sk) holds. An isomor-
phism is a bijective homomorphism whose inverse is also a homomorphism;
if an isomorphism from (M,a) to (N, b) exists, we write (M,a) ∼= (N, b). A
homomorphism h : (M,a) → (N, b) is fully surjective if it is surjective and if,
for all k-ary relation symbols R ∈ σ, whenever ⟨t1, . . . , tk⟩ ∈ RN , there also
exists a tuple ⟨s1, . . . , sk⟩ ∈ RM such that ⟨h(s1), . . . , h(sk)⟩ = ⟨t1, . . . , tk⟩.
We say that (M,a) and (N, b) are homomorphically equivalent if there exist
homomorphisms h : (M,a) → (N, b) and g : (N, b) → (M,a).

Borrowing from database-theoretic terminology, an FO formula of the form

φ(x1, . . . , xn) := ∃y1, . . . , ym

 ∧
j∈J

αj

 ,

where J is a finite index set and each αj is an atomic formula, is called a
conjunctive query (CQ). Each CQ φ corresponds to a finite pointed structure
whose domain is the variables of the formula, where each free variable is a
distinguished element, and whose facts are the atomic formulas occurring in the
formula [12]. This structure is the canonical instance of φ (notation: inst(φ)).
Any FO formula containing only atomic formulas, existential quantifiers, and
conjunction can be converted to a CQ by pulling all quantifiers to the front and
renaming variables as necessary, so we will use the notation inst for arbitrary
formulas of this form. The following useful fact equates satisfying assignments
for a conjunctive query with homomorphisms out of its canonical instance.

Fact 2.1 Let φ(x1, . . . , xn) be a CQ and (M,a1, . . . , an) a structure over the
same signature. A homomorphism h : inst(φ) → (M,a1, . . . , an) is a satisfying
assignment for φ in (M,a1, . . . , an) such that xi 7→ ai for each i ≤ n.

We write Hom((M,a), (N, a)) to denote the collection of all homomorphisms
from (M,a) to (N, b). A semiring is an algebraic structure S = ⟨S,+, ·, 0, 1⟩,
where ⟨S,+, 0⟩ is a commutative monoid, ⟨S, ·, 1⟩ is a monoid, · distributes over
+, and a · 0 = 0 · a = 0 for all a ∈ A. We define the homomorphism count from
(M,a) to (N, b) over S to be

homS((M,a), (N, a)) := countS(|Hom((M,a), (N, a))|),

where countS : N → S is defined by

countS(n) :=

{
0S if n = 0∑

1≤i≤n 1S , otherwise,
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where the summation is defined by iterated addition in S. Note that
homS((M,a), (N, a)) is only defined when |Hom((M,a), (N, a))| is finite. Our
notion of counting is essentially just iterated addition, within some semiring, of
the multiplicative unit of that semiring with itself. The decision to use semir-
ings is not a canonical choice, but is general enough to cover all known results
on homomorphism count indistinguishability.

Definition 2.2 Let (M,a) be a τ -structure with n distinguished elements, and
let C be a class of finite τ -structures, each with n distinguished elements, such
that Hom((N, b), (M,a)) is finite for each (N, b) in C. The left homomorphism
vector (or left profile) of (M,a) over S restricted to C is the C-indexed sequence

homS(C, (M,a)) := ⟨homS((N, b), (M,a))⟩(N,b)∈C .

The term left is used here because the sequence includes homomorphism counts
from structures in C to the structure (M,a).

We work mostly with the Boolean semiring B = ⟨{0, 1},∨,∧,⊤,⊥⟩ and
the natural number semiring N = ⟨ω,+, ·, 0, 1⟩. We write Mn

τ for the
class of all finite τ -structures with n distinguished elements. Note that
homB((M,a), (N, b)) = 1 when a homomorphism from (M,a) to (N, b)
exists, and homB((M,a), (N, b)) = 0 otherwise. It follows easily that
homB(Mn

τ , (M,a)) = homB(Mn
τ , (N, b)) if and only if (M,a) and (N, b) are

homomorphically-equivalent. Using the notation of Definition 2.2, Lovász’s
theorem can be stated as follows.

Theorem 2.3 (Lovász’s Theorem, [24]) Let (M,a) and (N, b) be finite τ -
structures with n distinguished elements, where τ is a finite relational signature.
Then homN(Mn

τ , (M,a)) = homN(Mn
τ , (N, b)) if and only if (M,a) ∼= (N, b).

The following definition was introduced in [5] to generalize Lovász’s result.

Definition 2.4 If C is a class of τ -structures, we write Inj(C) to denote the
class of τ -structures (N, b) such that there exists some injective homomorphism
h : (N, b) → (M,a) for some (M,a) ∈ C. Similarly, we write Sur(C) to denote
the class of τ -structures (N, b) such that there exists some fully-surjective ho-
momorphism h : (M,a) → (N, b) for some (M,a) ∈ C. We define the extension
class of C to be Ext(C) := Inj(C) ∩ Sur(C).
Theorem 2.5 ([5]) Let C be a non-empty class of finite pointed τ -structures,
each with the same number of distinguished elements. Then for all
(M,a), (N, b) ∈ C, we have homN(Ext(C), (M,a)) = homN(Ext(C), (N, b)) if
and only if (M,a) ∼= (N, b).

Important Classes of Structures. We now define the classes of structures
relevant to our results (examples of each can be found in Figure 1). Let Ma

be a σ-LTS. Given states m,n ∈ dom(M), a σ-path of length k from m to n
is a sequence π = ⟨f1, . . . , fk⟩ of binary facts such that m ∈ el(f1), n ∈ el(fk),
and el(fi) ∩ el(fi+1) ̸= ∅ for each i < k. A σ-path is simple if it contains no
duplicate facts. A connected component of Ma is a maximal set S ⊆ dom(M)



Comer 7

such that, for each distinct pair of states m,n ∈ S, there exists a σ-path π from
m to n. We say that Ma is connected if dom(M) is a connected component of
Ma, and we say that Ma is acyclic if there are no simple σ-paths from some
m ∈ dom(M) to itself. A directed σ-path of length k from m to n is a length-k
tuple ⟨(b0, b1), (b1, b2), . . . , (bk−1, bk)⟩ such that for each j < k, there is some
R ∈ σ such that RM (bj , bj+1) holds. Note that all directed σ-paths can be seen
as a special case of σ-paths.

A σ-LTS Ma is point-generated if, for each m ∈ dom(M), there’s a directed
σ-path from a to m. If there is a unique directed σ-path from a to each
m ∈ dom(M), thenMa is a σ-tree. The depth of a state m in a point-generated
σ-LTS Ma is the length depth(m) of the shortest directed σ-path from a to m;
we set depth(a) = 0. The depth of a point-generated σ-LTS is the supremum
of the depths of its elements. Given a point-generated σ-LTS Ma, we define
Mk

a to be the pointed substructure of Ma containing all elements in dom(M)
of depth at most k. Depth for connected structures is defined analogously via
σ-paths. If (Mj , aj) is a σ-tree for each j ∈ J , where J is some finite index
set, and (M,a) is a σ-LTS obtained by taking the disjoint unionM =

⊎
j∈J Mj

and setting a = aj for some j ∈ J , then (M,a) is a σ-forest.

Definition 2.6 We use the following notation for these classes of structures.

(i) T k
σ is the class of finite σ-trees of depth at most k.

(ii) Ak
σ is the class of finite connected, acyclic σ-LTSs of depth at most k.

(iii) Fσ is the class of finite σ-forests.

(iv) PGk is the class of finite point-generated σ-LTSs of depth at most k.

(v) Ck
σ is the class of finite connected σ-LTSs of depth at most k.

(vi) We set Tσ :=
⋃

k∈ω T k
σ ; we define Aσ, PGσ, and Cσ similarly.

The following class inclusions are clear from the definitions:

Tσ ⊆ PGσ ⊆ Cσ, Tσ ⊆ Aσ ⊆ Cσ, and Tσ ⊆ Fσ.

The following two facts are easily verified (cf. Definition 2.4).

Fact 2.7 T k
σ = Ext(T k

σ ).

Fact 2.8 PGk
σ = Ext(PGk

σ).

The next lemma, used in Sections 4 and 5, is proven by constructing an as-
cending chain of local isomorphisms whose union is a full isomorphism.

Lemma 2.9 If Ma and Nb are point-generated σ-LTSs such that Mk
a and Nk

b

are finite and isomorphic for all k ∈ N, then Ma
∼= Nb.

For the remainder of the paper, we fix a modal signature σ = Prop ∪ A,
where Prop is a finite set of (unary) proposition letters and A = {Ri | i ∈ I} is
a set of (binary) actions (or transitions) indexed by some finite set I.
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• •

a

• • •
(a) A σ-tree

• •

a

• • •
(b) A connected,
acyclic σ-LTS

• •

a

• • •

(c) A point-generated σ-
LTS

• a

•

• • •
(d) A connected σ-LTS

• •

a

• • •

•

•

• •
(e) A σ-forest

Fig. 1. Examples of σ-LTSs.

3 Positive-Existential Modal Logic

We begin with a characterization of equivalence with respect to positive-
existential modal logic (notation: ML+

3) by restricting the left homomorphism
vector over the Boolean semiring to the class of σ-trees. ML+

3 is the fragment

of ML lacking both negation and the □ modality, and we write ML+,k
3 for the

collection of ML+
3 formulas of modal depth at most k. The key observation

leading to this theorem is the following proposition.

Proposition 3.1 A σ-LTS Tc is in T k
σ if and only if Tc ∼= inst(STx(φ)) for

some disjunction-free φ ∈ ML+,k
3 , where STx denotes the standard translation.

Proof. For the forward direction, we show by induction on the depth of σ-trees
Tc that Tc is isomorphic to the canonical instance of some ML+,k

3 formula. For
each element s ∈ T , define mark+,T

s :=
∧

p∈λT
σ (s) p. For the base case, if

depth(Tc) = 0, then dom(T ) = {c}. Then clearly inst(STx(mark+,T
c )) ∼= Tc.

Now suppose that every σ-tree of depth j < k is isomorphic to the canon-
ical instance of some ML+,k

3 formula, and let Tc be an arbitrary σ-tree of
depth k. Let SuccTσ [c] = {s1, . . . , sn}, and let T 1

s1 , . . . , T
n
sn denote the cor-

responding rooted subtrees of Tc. By the inductive hypothesis, there exist
formulas φ1, . . . , φn such that inst(STx(φi)) ∼= T i

si for each i ≤ n. For
each i ≤ n, let ji be the unique index in I such that RT

ji
(c, si) holds. Then

inst(STx(mark+,T
s ∧

∧
i≤n 3jiφi)) is easily seen to be isomorphic to Tc.

For the reverse direction, we show by induction on the complexity of ML+
3

formulas φ that inst(STx(φ)) is a σ-tree. For the base case, if φ = p for
some p ∈ Prop, then inst(STx(φ)) is a single state at which the proposition
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letter p is true, which is a σ-tree. For the inductive step, either STx(φ) =
STx(ψ1) ∧ STx(ψ2) for some formulas ψ1, ψ2, or STx(φ) = ∃y(Ri(x, y) ∧ ψ)
for some formula ψ. In the first case, inst(STx(φ)) is the σ-tree obtained by
equating the roots of inst(STx(ψ1)) and inst(STx(ψ2)). In the second case,
inst(STx(φ)) is the σ-tree obtained by adding a new root to inst(STx(ψ)),
with the old root as its unique Ri-successor. 2

Note that if Tc is a finite σ-tree andMa is an image-finite σ-LTS, then there
are only finitely many homomorphisms from Tc to Ma. It follows that if Ma is
image-finite, then homS(T k,Ma) is well-defined for all semirings S.

Theorem 3.2 If Ma and Nb are image-finite σ-LTSs, then Ma ≡ML+,k
3

Nb if

and only if homB(T k
σ ,Ma) = homB(T k

σ , Nb).

Proof. For the left-to-right direction, suppose that Ma ≡ML+,k
3

Nb, and let Tc
be an arbitrary finite σ-tree of depth at most k. By Proposition 3.1, let φ be
a disjunction-free ML+,k

3 formula such that Tc ∼= inst(STx(φ)). Then

homB(Tc,Ma) = 1 ⇐⇒ Ma |= φ (Fact 2.1)

⇐⇒ Nb |= φ (Assumption)

⇐⇒ homB(Tc, Nb) = 1 (Fact 2.1).

Hence homB(T k
σ ,Ma) = homB(T k

σ , Nb). The other direction is symmetric. 2

Corollary 3.3 If Ma and Nb are image-finite σ-LTSs, then Ma ≡ML+
3
Nb if

and only if homB(Tσ,Ma) = homB(Tσ, Nb).

ML+
3 with backward and global modalities. We now state two results for

ML+
3 extended with backward and global modalities. The proofs are similar

to, yet simpler than, those for ML# with the backward and global modalities
given in Section 4, and so we omit them.

Definition 3.4 Given a pointed σ-LTS Ma and a formula φ, we define

M,a |= ♦≥k
i φ if there exist at least k many elements

b ∈ PredMRi
[a] such that M, b |= φ.

We call ♦≥k
i a backward modality for the action Ri, where i ∈ I. We write

ML+,B
3 for the extension of ML+

3 with the modalities ♦≥1
i , and ML+,B,k

3 for

the fragment of ML+,B
3 containing formulas of modal depth at most k.

Theorem 3.5 If Ma and Nb are degree-finite σ-LTSs, then Ma ≡σ
ML+,B,k

3

Nb

if and only if homB(Ak
σ,Ma) = homB(Ak

σ, Nb).

Definition 3.6 Given a pointed σ-LTS Ma and a formula φ, we define

Ma |= E≥kφ if there exist at least k many elements
b ∈M such that Mb |= φ.

We refer to E≥k as a global modality. Let ML+,G
3 denote the extension of ML+

3

with the global modality for k = 1.
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Theorem 3.7 If Ma and Nb are finite σ-LTSs, then Ma ≡σ
ML+,G

3

Nb if and

only if homB(Fσ,Ma) = homB(Fσ, Nb).

Note that Theorems 3.2, 3.5, and 3.7 are stated for image-finite, degree-
finite, and finite LTSs, respectively, only due to the fact that our notion of
counting requires a finite number of homomorphisms in order to be well-defined.
However, this is an artificial constraint: if we were to treat the Boolean homo-
morphism count only as an indicator that Hom(Tc,Ma) is non-empty, then the
Boolean left profiles with respect to Tσ, Aσ, and Fσ would be well-defined for,
and hence all of these results would apply to, arbitrary σ-LTSs.

4 Graded Modal Logic

We now turn to graded modal logic (notation: ML#), which is the extension

of the basic modal language with graded modalities 3
≥k
i for each k ∈ Z+ and

i ∈ I, where 3
≥k
i φ asserts that there are at least k many Ri-successors of the

current state at which φ is true [17,18]. Recall the notion of a tree-unraveling.

Definition 4.1 The unraveling of a σ-LTS Ma is the σ-LTS unr(Ma) where

(i) dom(unr(Ma)) is the set of strings w = ⟨w1, . . . , wn⟩ over dom(M) with
a = w1 and for each i < n, there is R ∈ A such that RM (wi, wi+1) holds,

(ii) Runr(Ma) = {(w,w⌢⟨u⟩) | (last(w), u) ∈ RM} for each R ∈ A, and
(iii) punr(Ma) = {w ∈ dom(unr(Ma)) | last(w) ∈ pM} for p ∈ Prop,

where ⟨a⟩ is the unique distinguished element of the model, last is the function
mapping strings to their last element, and w⌢w′ denotes string concatenation.

IfMa is a σ-LTS, then unr(Ma) is a (possibly infinite) σ-tree. Furthermore,
if Ma is image-finite, then unrk(Ma), the substructure of unr(Ma) containing
only states of depth at most k, is a finite σ-tree of depth k. The unraveling
construction is known to preserve the truth of ML# formulas.

Theorem 4.2 (Unraveling Invariance, [10]) If Ma is a σ-LTS, then for
each φ ∈ ML#, we have that Ma |= φ if and only if unr(Ma) |= φ.

In fact, MLk
# formulas can describe finite σ-trees of depth k up to isomorphism.

Recall that if Ma is a σ-tree, then Mk
a denotes the substructure of Ma contain-

ing only elements of depth at most k. We write unrk(Ma) for the substructure
of unr(Ma) containing only elements of depth at most k.

Proposition 4.3 For each Tc ∈ T k
σ , there is a formula φ ∈ MLk

# such that, if

Ma is a σ-tree, then Ma |= φ if and only if Mk
a
∼= Tc.

Proof. For any state s ∈ T , define markTs :=
(∧

p∈λT
σ (s) p

)
∧
(∧

p ̸∈λT
σ (s) ¬p

)
.

We proceed by strong induction on k. For Tc ∈ T 0
σ , clearly markTs meets

the requirements of the claim. Now suppose the claim holds for T j
σ for all

j < k, and let Tc ∈ T k
σ . Let SuccTσ [c] = {s1, . . . , sn}, and let T i

si denote
the subtree of Tc rooted at si for each i ≤ n. By the inductive hypothesis,
there is a formula φi satisfying the claim for each T i

si . Some of these may
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be equivalent, so let φ′
1, . . . , φ

′
m be the sequence of formulas obtained by re-

moving duplicates. For each i ≤ m, let ni denote the number of elements
sj ∈ SuccTσ [c] such that the formula associated with T j

sj is φ′
i. The formula

φ :=
(
markTc ∧3n

i ⊤ ∧
∧

i≤m 3
=ni
i φ′

i

)
satisfies the requirements of the claim.2

The next lemma shows that homomorphism counts from finite σ-trees are pre-
served between a σ-LTS and its unraveling up to depth k.

Lemma 4.4 If Ma is an image-finite LTS, then for each k ∈ N, we have that
homN(T k,Ma) = homN(T k, unrk(Ma)).

Proof. Given a directed tree-shaped LTS Tc of depth at most k, we construct
injections between Hom(Tc,Ma) and Hom(Tc, unr

k(Ma)).

(≤) For each h ∈ Hom(Tc,Ma), we define partial maps ĥi : Tc → unrk(Ma)

for i ≤ k by recursion on the depth of elements of Tc, where ĥ0(c) = ⟨a⟩ and

ĥi+1(m) = ĥi(parent(m))⌢h(m). We claim that ĥ =
⋃

i≤k ĥi is a homomor-

phism. To see that ĥ preserves proposition letters, observe that, for any propo-
sition letter p ∈ P , we have that if pT (m) holds, then pM (h(m)) holds since h

is a homomorphism, and so punr
k(Ma)(ĥ(m)) holds since h(m) = last(ĥ(m)).

To show that ĥ preserves actions, it suffices to show that, for all R ∈ A, all
states m ∈ Tc, and all s ∈ SuccMR [m], we have that Runrk(Ma)(ĥ(m), s) holds.

This follows from the observations that (1) ĥ(s) extends ĥ(m) (by the definition

of ĥ), and (2) if RM (last(ĥ(x)), last(ĥ(s))) holds, then RM (h(x), h(sj)) (since

hi is a homomorphism), in which case Runrk(Ma)(ĥ(m), s) holds by the definition

of unravelings. Thus ĥ is a homomorphism. Furthermore, it’s clear that the
map h 7→ ĥ is an injection from Hom(Tc,Ma) to Hom(Tc, unr

k(Ma)).
(≥) For each g ∈ Hom(Tc, unr

k(Ma)), define ĝ : Tc → Ma to be the map
m 7→ last(g(m)). By the definition of unravelings, ĝ is a homomorphism. We
claim that g 7→ ĝ is an injective map from Hom(Tc, unr

k(Ma)) to Hom(Tc,Ma).
To see this, let g, g′ : Tc → unr(Ma) be homomorphisms, and let ĝ, ĝ′ be the
corresponding maps in Hom(Tc,Ma). Suppose that ĝ = ĝ′. We now show by
induction on depth of the elements of Tc that g = g′.

The base case is immediate, since g(c) = g′(c) = ⟨a⟩. Now suppose induc-
tively that g and g′ agree on all elements of depth less than k, and let m ∈ Tc
be some element of depth k. By assumption, we have that ĝ(m) = ĝ′(m), and
so last(g(m)) = last(g′(m)). Let n denote the unique predecessor of m (i.e.,
its parent). Clearly n has depth less than k, and so g(n) = g′(n). Since g
and g′ are homomorphisms and Ri(n,m) holds for some i ∈ I, we have that

R
unr(Ma)
i (g(n), g(m)) and R

unr(Ma)
i (g′(n), g′(m)) hold. Then by the definition

of the actions for unravelings, we have that g(m) = g(n)⌢ĝ(m) = g′(m). 2

We are now ready to prove our characterization result for ML#.

Theorem 4.5 For image-finite LTSs Ma and Nb, the following are equivalent:

(i) homN(T k,Ma) = homN(T k, Nb),

(ii) unrk(Ma) ∼= unrk(Nb),
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(iii) Ma ≡σ
MLk

#

Nb.

Proof. The equivalence of (ii) and (iii) is a consequence of Proposition 4.3,
Theorem 4.2 and the observation that satisfaction of MLk

# formulas in σ-
trees depends only on the elements up to depth k. For (i) to (ii), suppose
that homN(T k,Ma) = homN(T k, Nb). Then by Lemma 4.4, we have that
homN(T k, unrk(Ma)) = homN(T k, unrk(Nb)). Since unrk(Ma), unr

k(Nb) ∈
T k, this implies, by Fact 2.7 and Theorem 2.5, that unrk(Ma) ∼= unrk(Nb). For
(ii) to (i), suppose that unrk(Ma) ∼= unrk(Nb). Then homN(T k, unrk(Ma)) =
homN(T k, unrk(Nb)), and so homN(T k,Ma) = homN(T k, Nb) by Lemma 4.4.2

Using Lemma 2.9, we easily obtain the following corollary.

Corollary 4.6 For image-finite LTSsMa and Nb, the following are equivalent:

(i) homN(T ,Ma) = homN(T , Nb),

(ii) unr(Ma) ∼= unr(Nb),

(iii) Ma ≡σ
ML#

Nb.

ML# with backward modalities. Let MLB
# denote the extension of ML#

with backward modalities for each k ∈ N (cf. Definition 3.4). We write MLB,k
#

for the fragment of MLB
# formulas of modal depth at most k. Fix an expansion

σB = Prop ∪ A ∪ AB of σ, where AB = {Bi | i ∈ I} is disjoint from A.

Definition 4.7 The backward expansion of a σ-LTS Ma is the σB-expansion

MB
a of Ma given by setting BMB

i = {⟨n,m⟩ | RM
i (m,n) holds} for each i ∈ I.

Recall that Ak
σ denotes the class of connected acyclic σ-LTSs of depth at most

k, and that Aσ =
⋃

k∈ω Ak
σ (cf. Definition 2.6).

Definition 4.8 Given some Tc ∈ Aσ, we define a σB-LTS T
↓
c := (T ↓, c) with

dom(T ↓) := dom(T ) and λT
↓

σ (m) := λTσ (m) for all m ∈ dom(T ), where

(i) If RT
i (m,n) holds where depth(m) < depth(n), then RT↓

i (m,n) holds.

(ii) If RT
i (m,n) holds where depth(n) < depth(m), then BT↓

i (m,n) holds.

Intuitively, (·)↓ replaces all Ri transitions “pointing toward” the root c with Bi

transitions in the opposite direction. For all Tc ∈ Aσ, clearly T
↓
c is a σB-tree.

Definition 4.9 Let Sd be a σB-LTS. Define a σ-LTS flip(Sd) := (flip(S), d)

with dom(flip(S)) = dom(S) and λ
flip(S)
σ (m) := λSσ(m) for all m ∈ dom(S),

where R
flip(S)
i = RS

i ∪ (BS
i )

−1 for each i ∈ I.

Intuitively, flip forms a σ-LTS from a σB-LTS Sd by replacing Bi transi-
tions in Sd by the corresponding Ri transition in the opposite direction. If Sd

is a σB-tree, then flip(Sd) is a connected acyclic σ-LTS. The (·)↓ transforma-
tion on connected, acyclic σ-LTSs and the flip transformation on σB-trees are
exact inverses of one another: Tc = flip(T ↓

c ) for all connected acyclic σ-LTSs
Tc, and Sd = (flip(Sd))

↓ for all σB-trees Sd. These operations also clearly
preserve the depth of the structures to which they are applied.
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When we consider homomorphisms from finite connected acyclic σ-LTSs
Tc, image-finiteness is not enough to guarantee that Hom(Tc,Ma) is finite.
However, if Ma is degree-finite, then

⋃
h∈Hom(Tc,Ma)

Im(h) is finite, and hence

homN(Aσ,Ma) is well-defined. Furthermore, note that if Ma is a degree-finite
σ-LTS, then MB

a is also a degree-finite σB-LTS.

Proposition 4.10 Let Ma be a degree-finite σ-LTS. Then

(i) If Tc is in Aσ, then homN(Tc,Ma) = homN(T
↓
c ,M

B
a ).

(ii) If Tc is in TσB
, then homN(Tc,M

B
a ) = homN(flip(Tc),Ma).

Proof. [Sketch] For part (i), we show that a map h : dom(T ) → dom(M) is a
homomorphism from Tc to Ma if and only if it is also a homomorphism from
T ↓
c to MB

a , which is straightforward from the definitions of (·)↓ and MB
a . The

proof of part (ii) is analogous. 2

Lemma 4.11 Let Ma and Nb be degree-finite σ-LTSs. Then

homN(Ak
σ,Ma) = homN(Ak

σ, Nb) ⇐⇒ homN(T k
σB
,MB

a ) = homN(T k
σB
, NB

b ).

Proof. [Sketch] Observe that (·)↓ is a bijective map from Ak
σ to T k

σB
, while

flip is its inverse. The forward direction is by contraposition. If we have
homN(Tc,M

B
a ) ̸= homN(Tc, N

B
b ) for some σB-tree Tc of depth at most k, then

we have homN(T
↓
c ,Ma) ̸= homN(T

↓
c , Nb) by Proposition 4.10. The reverse

direction is proven by contraposition in a similar fashion. 2

Lemma 4.12 Let Ma and Nb be degree-finite σ-LTSs. Then Ma ≡σ
MLB,k

#

Nb

if and only if MB
a ≡σB

MLk
#

NB
b .

Proof. [Sketch] Consider the translation tr fromMLB,k
# to MLk

# which replaces
backward modalities with the corresponding forward modalities in AσB

. It is
a straightforward induction to show that Ma |= φ if and only if MB

a |= tr(φ).
Since this translation is bijective, the result follows immediately. 2

We now prove our MLB
# characterization result.

Theorem 4.13 Let Ma and Nb be degree-finite σ-LTSs. Then

hom(Ak
σ,Ma) = hom(Ak

σ, Nb) ⇐⇒ Ma ≡σ
MLB,k

#

Nb.

Proof. Let Ma and Nb be degree-finite σ-LTSs. Then we have that

hom(Ak
σ,Ma) = hom(Ak

σ, Nb)

⇐⇒ hom(T k
σB
,MB

a ) = hom(T k
σB
, NB

b ) (Lemma 4.11)

⇐⇒ MB
a ≡σB

MLk
#

NB
b (Theorem 4.5)

⇐⇒ Ma ≡σ
MLB,k

#

Nb. (Lemma 4.12)

This completes the proof. 2
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ML# with the global modality. Let MLG
# denote the extension of ML#

with the global modalities for each k ∈ N (cf. Definition 3.6). The proof
of our characterization result for MLG

# mirrors that of Theorem 4.13. Let

σG = Prop∪A∪{RG}, where RG is a fresh action not in A. We write 3≥k
G for

the graded modalities associated with the action RG. The following definition
is analogous to the “backwards expansion” (cf. Definition 4.7).

Definition 4.14 Given a pointed σ-LTS Ma, the global expansion of Ma is

the σG-expansion M
G
a of Ma given by setting RMG

G = dom(M)× dom(M).

Recall that Fk
σ denotes the class of connected acyclic σ-LTSs of depth at most

k, and that Fσ =
⋃

k∈ω Fk
σ (cf. Definition 2.6). The next definition defines a

relation between structures in Fσ and those in Tσ. Its role is analogous to that
of flip (cf. Definition 4.9) in the proof of Theorem 4.13.

Definition 4.15 Let Tc ∈ Fσ. We say that a σG-expansion T ′
c of Tc is an

RG-connection of Tc if T ′
c is a σG-tree and Tc = T ′

c ↾ σ.

It’s easy to see that every T ′
c ∈ TσG

is an RG-connection of some Tc ∈ Fσ.
Similarly, for all Tc ∈ Fσ, we have that Tc = T ′

c ↾ σ (the reduct of T ′
c to the

signature σ) for some T ′
c ∈ TσG

. From these definitions, it is straightforward
to prove the following analogues of Lemma 4.11 and Lemma 4.12.

Lemma 4.16 Let Ma and Nb be finite σ-LTSs. Then

homN(Fσ,Ma) = homN(Fσ, Nb) ⇐⇒ homN(TσG
,MG

a ) = homN(TσG
, NG

b ).

Lemma 4.17 Let Ma and Nb be finite σ-LTSs. Then Ma ≡σ
MLG

#

Nb if and

only if MG
a ≡σG

ML#
NG

b .

In the case of the global modality, we state our result only for finite σ-
LTSs Ma. This is necessary, since homomorphisms out of σ-forests could map
connected components which do not contain c to any connected component in
Ma, and so Hom(Tc,Ma) may be infinite even if Ma is degree-finite.

Theorem 4.18 If Ma and Nb are finite σ-LTSs, then Ma ≡σ
MLG

#

Nb if and

only if homN(Fσ,Ma) = homN(Fσ, Nb).

Proof. By Lemma 4.16, Theorem 4.5, and Lemma 4.17. 2

5 Hybrid Logic

The hybrid logic HL(↓,@) is the extension of the basic modal language with the
↓-binder, the @-operator, and a countably infinite collection WVAR of world
variables [3]. Formulas of HL(↓,@) are generated by the following grammar:

φ := p | x | φ ∧ φ | φ ∨ φ | ¬φ | 3iφ | □iφ |↓ x.φ | @xφ,

where i ∈ I, p ∈ Prop, and x ∈ WVAR 1 . A world variable x occurs free in a
formula φ if it does not occur in a subformula of φ of the form ↓ x.ψ, and bound
otherwise. A formula is a sentence if it contains no free (world) variables.

1 Readers familiar with HL(↓,@) should note that we omit nominals from our presentation.
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An assignment for a σ-LTS Ma is a map g : WVAR → dom(M). Given an
assignment g, a world variable xi, and a state m ∈ dom(M), we let g[xi 7→ m]
denote the assignment which is the same as g, except that it maps xi to m.
The semantics (omitting the propositional, Boolean, and modal clauses, which
are defined as usual) for HL(↓,@) are given as follows

Ma, g |= x if g(x) = a for x ∈ WVAR,
Ma, g |=↓ xi.φ if Ma, g[xi 7→ a] |= φ, and
Ma, g |= @xφ if Mb, g |= φ, where g(x) = b,

For HL(↓,@) sentences φ, the assignment chosen does not matter, and so we
write Ma |= φ instead of Ma, g |= φ. Given a σ-LTS Ma, the submodel of M
generated by a is the structure gsub(Ma), defined to be the smallest substruc-
tureM ′

a ofMa containing a and such that, whenever b ∈ dom(M ′) and RM (b, c)
holds, then c ∈ dom(M ′). Clearly gsub(Ma) is a point-generated σ-LTS. The
following known result relates HL(↓,@) to the generated submodel-invariant
fragment of FO, where a formula φ is invariant for generated submodels if, for
any σ-LTS Ma, we have Ma |= φ if and only if gsub(Ma) |= φ.

Theorem 5.1 (Generated Submodel Invariance, [3]) If φ(x) is a first-
order formula in a modal signature, then φ(x) is equivalent to a (nominal-free)
HL(↓,@) sentence if and only if φ(x) is invariant for generated submodels.

We write gsubk(Ma) to denote the substructure of gsub(Ma) containing
only elements of depth at most k. If Ma is image-finite, then gsubk(Ma) is
finite for all k ∈ N. The next proposition follows easily from Theorem 5.1.

Proposition 5.2 For each Nb ∈ PGk
σ, there is a formula φ ∈ HL(↓,@) such

that, if Ma is an image-finite point-generated σ-LTS, then Ma |= φ if and only
if gsubk(Ma) ∼= Nb.

Proof. Fix some Nb in PGk with dom(N) = {b1 . . . bn}, where b = b1. Let
δ(x1, . . . , xn) be the FO formula expressing that the xi are distinct, and that
for all y, y is reachable from x1 by a directed σ-path of length at most n if and
only if y = xj for some 1 ≤ j ≤ n. Consider the FO formula

ψ(x1) := ∃x2 . . . ∃xn

δ(x1, . . . , xn) ∧
 ∧

i,j≤n:RN (bi,bj)

R(xi, xj)

 .

If Ma is an image-finite point-generated LTS, then M |= ψ(a) if and only if
gsubk(Ma) ∼= Nb. Clearly ψ(x1) is a first-order formula in a modal signature
which is invariant for generated submodels, and so there exists a nominal-free
HL(↓,@) sentence equivalent to ψ(x1), which is what we wanted to show. 2

The next lemma is obvious, since homomorphisms preserve path lengths and
map distinguished elements to distinguished elements.

Lemma 5.3 If Ma is an image-finite LTS, then for each k ∈ N, we have that
homN(PGk

σ,Ma) = homN(PGk
σ, gsub

k(Ma)).
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We now prove our characterization result for HL(↓,@).

Theorem 5.4 For image-finite LTSs Ma and Nb, the following are equivalent:

(i) homN(PGσ,Ma) = homN(PGσ, Nb),

(ii) gsub(Ma) ∼= gsub(Nb),

(iii) Ma ≡HL(↓,@) Nb.

Proof. For (i) to (ii), suppose that homN(PGσ,Ma) = homN(PGσ, Nb). Then
clearly homN(PGk

σ,Ma) = homN(PGk
σ, Nb), and so by Lemma 5.3, we have

that homN(PGk
σ, gsub

k(Ma)) = homN(PGk
σ, gsub

k(Nb)). Hence by Fact 2.8
and Theorem 2.5, gsubk(Ma) ∼= gsubk(Nb) for each k ∈ Z+, and so by
Lemma 2.9, we have that gsub(Ma) ∼= gsub(Nb). For (ii) to (i), suppose
that we have gsub(Ma) ∼= gsub(Nb). Since the range of a homomorphism
from a point-generated σ-LTS to Ma (resp. Nb) is contained within gsub(Ma)
(resp. gsub(Nb)), we have that homN(PGσ,Ma) = homN(PGσ, Nb). The di-
rection (ii) to (iii) is immediate from Theorem 5.1. For (iii) to (ii), Propo-
sition 5.2 gives us formulas φk ∈ HL(↓,@) such that Nb |= φ if and only if
gsubk(Nb) ∼= gsubk(Ma) for all k ∈ N. Since gsubk(Ma) |= φ, we have by
Theorem 5.1 that Ma |= φ, and so by the assumption that Ma ≡k

HL(↓,@) Nb,

we have Nb |= φ. Hence gsubk(Ma) ∼= gsubk(Nb) for all k ∈ N. Then by
Lemma 2.9, gsub(Ma) ∼= gsub(Nb). 2

We do not provide a version of this theorem which is parametrized by modal
depth, as we did for ML# (cf. Theorem 4.5), because Proposition 5.2 does not
offer a bound (as a function of k) on the modal depth of the HL(↓,@) formula
describing a point-generated submodel of depth at most k up to isomorphism.

Backward and Global Modalities. HL(E, ↓,@), the extension of HL(↓,@)
with the global modality, is known to have the expressive power of full first-
order logic [4], which we noted previously is captured by the left profile over the
natural number semiring with respect to the class of all structures. This implies
that HL(E, ↓,@) equivalence is captured by restricting the left profile over the
natural semiring to the class of all σ-LTSs. We now provide a characterization
result for HLB(↓,@), the extension of HL(↓,@) with the backward modalities
for k = 1 (cf. Definition 3.4). As in Section 4, we fix an expanded signature
σB = Prop ∪ A ∪ AB , where AB = {Bi | i ∈ I} is disjoint from A.
Definition 5.5 Let Tc ∈ Cσ and T ′

c ∈ PGσB
with dom(T ) = dom(T ′). We

say that T ′
c is a PG-augmentation of Ma if, for each i ∈ I, there exists some

Xi ⊆ RT
i such that RT ′

i = RT
i \Xi and B

T ′

i = BT
i ∪X−1

i .

Thus T ′
c is a PG-augmentation of Tc if it can be obtained by replacing Ri

transitions in Tc with Bi transitions in the opposite direction. Recall the flip
operation (cf. Definition 4.9). If T ′

c is a point-generated σB-LTS, then clearly
flip(T ′

c) is a connected σ-LTS.

Definition 5.6 Let Ma be a connected σB-LTS. We write RMa to denote the
set of elements in dom(M) reachable by a directed σB-path from a, and we set
UMa = dom(M) \ RMa . If all transitions from elements of UMa to elements of
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RMa are actions in A, then we write P(Ma). Furthermore, if P(Ma) is satisfied,
then we define exp(Ma) to be the σB-LTS with dom(exp(Ma)) = dom(M) and
pexp(Ma) = pM for all p ∈ Prop, such that for all i ∈ I,

R
exp(Ma)
i = RM

i \ {⟨m,n⟩ | ⟨m,n⟩ ∈ RM
i ,m ∈ UMa , n ∈ RMa}, and

B
exp(Ma)
i = BM

i ∪ {⟨n,m⟩ | ⟨m,n⟩ ∈ RM
i ,m ∈ UMa , n ∈ RMa}.

Intuitively, P(Ma) asserts that all transitions out of elements of UMa to
elements of RMa are actions in A. The exp operation replaces Ri transitions
from elements of UMa to elements of RMa with the corresponding Bi actions
in the opposite direction. The next proposition shows that exp is an operation
on the class of connected σB-LTSs Ma satisfying P(Ma) which grows the set
of elements reachable by a σB-path from a. The proof is straightforward.

Proposition 5.7 For all Ma ∈ CσB
satisfying P(Ma), we have that RMa ⊆

Rexp(Ma) and Uexp(Ma)
a ⊆ UMa , and these inclusions are proper if UMa ̸= ∅.

Furthermore, exp(Ma) is a connected σB-LTS satisfying P(Ma).

Proposition 5.8 If Tc is in Cσ, then there is a PG-augmentation T ′
c of Tc.

Proof. Suppose Tc is a finite connected σ-LTS. Since Tc contains no σB tran-
sitions, it clearly satisfies P(Tc). Recall from Proposition 5.7 that Uexp(Tc) is
a proper subset of UTc whenever UTc ̸= ∅, and so there exists some k ∈ N
such that Uexpk(Tc) = ∅, where the exponent k indicates iterated applica-
tion of the exp operation (which we can do by Proposition 5.7). Hence

Rexpk(Tc) = dom(expk(Tc)), and so expk(Tc) is a point-generated σB-LTS.
Furthermore, T ′

c := expk(Tc) is clearly a PG-augmentation of Tc. 2

The following proposition is straightforward to prove from the definitions.

Proposition 5.9 Let Ma be a degree-finite σ-LTS. Then

(i) If Tc is in Cσ, then homN(Tc,Ma) = homN(T
′
c,M

B
a ) for any PG-

augmentation T ′
c of Tc.

(ii) If T ′
c is in PGσB

, then homN(flip(T
′
c),Ma) = homN(T

′
c,M

B
a ).

Lemma 5.10 Let Ma and Nb be degree-finite σ-LTSs. Then homN(Cσ,Ma) =
homN(Cσ, Nb) if and only if homN(PGσB

,MB
a ) = homN(PGσB

, NB
b ).

Proof. Both directions are by contraposition. For the reverse direction, if
homN(Cσ,Ma) ̸= homN(Cσ, Nb), then there is a finite connected σ-LTS Tc such
that homN(Tc,Ma) ̸= homN(Tc, Nb). Then by Proposition 5.8, there exists a
PG-augmentation T ′

c of Tc. Then by Lemma 5.9, we have that homN(T
′
c,Ma) ̸=

homN(T
′
c, Nb), and hence homN(PGσB

,MB
a ) ̸= homN(PGσB

, NB
b ). The forward

direction is similar, using the flip function and Lemma 5.9. 2

The proof of the next lemma is analogous to that of Lemma 4.12.

Lemma 5.11 LetMa and Nb be degree-finite σ-LTSs. ThenMa ≡σ
HLB(↓,@)

Nb

if and only if MB
a ≡σB

HL(↓,@) N
B
b .
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Theorem 5.12 IfMa and Nb are degree-finite σ-LTSs, thenMa ≡σ
HLB(↓,@)

Nb

if and only if hom(Cσ,Ma) = hom(Cσ, Nb).

Proof. By Lemma 5.10, Theorem 5.4, and Lemma 5.11. 2

6 Negative Results

Recall that ML denotes the basic (multi)modal language. Positive modal logic
(notation: ML+) is the fragment of ML without negation. We now show that
ML+-equivalence and ML-equivalence do not admit homomorphism count in-
distinguishability characterizations. For this, it will be convenient to work with
the modal equivalence relations corresponding to these languages.

Definition 6.1 Let Ma and Nb denote σ-LTSs. A directed simulation from
Ma to Nb is a relation Z ⊆ dom(M)× dom(N) with (a, b) ∈ Z such that

(prop−) If (m,n) ∈ Z, then λMσ (m) ⊆ λNσ (n);

(forth) For each i ∈ I, if (m,n) ∈ Z and there’s s ∈M such that RM
i (m, s),

then there’s some t ∈ N such that RN
i (n, t) and (s, t) ∈ Z; and

(back) For each i ∈ I, if (m,n) ∈ Z and there’s t ∈ N such that RN
i (n, t),

then there’s some s ∈M such that RM
i (m, s) and (s, t) ∈ Z.

If directed simulations fromMa toNb andNb toMa exist, then we say that they
are directed simulation equivalent (notation: Ma -d Nb). Z is a bisimulation
between Ma and Nb if it also satisfies the stronger condition (prop) asserting
that λMσ (m) = λNσ (n) whenever (m,n) ∈ Z. If a bisimulation between σ-LTSs
Ma and Nb exists, then they are bisimilar (notation: Ma - Nb).

Directed simulation equivalence and bisimulation capture ML+-equivalence and
ML-equivalence, respectively, over image-finite σ-LTSs.

Theorem 6.2 (Directed Simulation Equivalence Invariance, [21]) For image-
finite σ-LTSs Ma and Nb, we have that Ma -d Nb if and only if Ma ≡ML+ Nb.

Theorem 6.3 (Bisimulation Invariance, [9]) For image-finite σ-LTSsMa and
Nb, we have that Ma - Nb if and only if Ma ≡ML Nb.

For equivalence relations ∼ and ≈ on σ-LTSs, ifMa ∼ Nb impliesMa ≈ Nb,
then we say that ∼ is finer than ≈, and ≈ is coarser than ∼. A function f
with dom(f) = N is ultimately periodic if there exist P ∈ Z+ and L ∈ N
such that f(n) = f(n + P ) for all n ≥ L. If L and P are the least integers
such that the ultimate periodicity condition is satisfied, then we refer to the
sequence ⟨f(0), . . . , f(L−1)⟩ as the preperiod of f , and we refer to the sequence
⟨f(L), . . . , f(L+ P − 1)⟩ as the periodic segment of f .

Proposition 6.4 Let S = ⟨S,+S , ·S , 0S , 1s⟩ be a semiring such that countS is
not injective. Then countS is ultimately periodic. Furthermore, the preperiod
and the periodic segment are disjoint, and there are no elements which occur
more than once in either the preperiod or the periodic segment.

Proof. If rng(countS) is not injective, then there exists some least m such
that countS(m) = countS(L) for some L < m. Let P = m − L. Observe
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that countS(a+b) = countS(a)+S countS(b) for all a, b ∈ N, by associativity of
addition in S. We show by induction on n ∈ N that countS(n) = countS(n+P )
if n ≥ L. If n = L, then countS(n) = countS(m) = countS(n + P ). Now
suppose inductively that countS(n) = countS(n+ P ). Then

countS(n+ 1) = countS(n) +S countS(1) (Assoc. of +S)

= countS(n+ P ) +S countS(1) (Inductive Hypothesis)

= countS(n+ 1 + P ). (Assoc. of +S)

Hence countS(n) = countS(n+ P ) for all n ≥ L. By the above argument, the
periodic segment begins with the first appearance of an element of S which
occurs twice in rng(countS), and so the preperiod does not contain repeated
elements. This also implies that the preperiod and period are disjoint. Finally,
the fact that the periodic segment must also not contain any duplicate elements
is clear, since successive elements are obtained by adding 1S , and so a duplicate
element must mark the start of another repetition of the periodic segment. 2

Theorem 6.5 Let S = ⟨S,+S , ·S , 0S , 1S⟩ be an arbitrary semiring, and let ∼
denote any relation finer than directed simulation and coarser than bisimula-
tion. There does not exist a class C of σ-LTSs such that, for all finite σ-LTSs
Ma and Nb, we have homS(C,Ma) = homS(C, Nb) if and only if Ma ∼ Nb.

Proof. Suppose toward a contradiction that some such class C exists. For
n ∈ Z+, let Kn

a denote the σ-LTS with n states, distinguished element a,
pK

n

= dom(Kn), and RKn

= dom(Kn) × dom(Kn). Clearly Kn
a - Kn′

a′ for
all n, n′ ∈ Z+. Furthermore, for all σ-LTSs Tc with |dom(T )| = k, every map
h : Tc → Kn

a with h(c) = a is a homomorphism, so |Hom(Tc,K
n
a )| = nk−1.

We first rule out that C contains only σ-LTSs Tc with |dom(T )| = 1.
If it did, then for all σ-LTSs Sd, we have homS(Tc, Sd) = 1 if and only
if Hom(Tc, Sd) ̸= ∅. Consider the σ-LTSs in Figure 2. By homomorphic
equivalence, Hom(Tc,Ma) ̸= ∅ if and only if Hom(Tc, Nb) ̸= ∅. Hence
homS(C,Ma) = homS(C, Nb). However, since Ma ̸-d Nb, this implies that
Ma ̸∼ Nb, contradicting our assumption about C. Thus C must contain a
structure Tc with |dom(T )| = k + 1 for some k ∈ Z+.

a• • b •¬p p p

Ma Nb

Fig. 2. Homomorphically-equivalent σ-LTSs such that Ma ̸- Nb and Ma ̸-d Nb.

We now claim that countS is non-injective. If countS were injective, then
homS(Tc,K

1
a) = countS(1) ̸= countS(2

k) = homS(Tc,K
2
a). Since K

1
a - K2

a

(and hence K1
a ∼ K2

a), this contradicts our assumption about C. Thus we may
assume that countS is non-injective, and so by Proposition 6.4, it is ultimately
periodic: there exist P ∈ Z+ and L ∈ N such that countS(n) = countS(n+ P )
for all n ≥ L. Let π = π0 . . . πP−1 denote the periodic segment of countS , and
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assume that L and P are minimal, so that, by Proposition 6.4, π contains no
duplicate elements. Figure 3 depicts the range of countS .

0S 1S . . . countS(L− 1) π0 . . . πP−1 π0 . . . πP−1 . . .

Fig. 3. The counting sequence in S.

We now distinguish several cases, deriving a contradiction in each.

(i) If 0S occurs in π, then L = 0 (i.e., countS is purely periodic), and
π0 = 0S . Then countS(n) = countS(n mod P ) for all n ∈ N. Hence
we have that homS(Tc,K

P
a ) = countS(P

k) = countS(P
k mod P ) = 0S ,

while hom(Tc,K
1
a) = countS(1) = 1S . This implies that homS(Tc,K

1
a) ̸=

homS(Tc,K
P
a ), which is a contradiction since K1

a - KP
a .

(ii) If 1S occurs in π but 0S does not, then π0 = 1S . Distinguish cases.
(a) If P = 1, then for all σ-LTSs Sd, we have homS(Tc, Sd) = 1 if and only

if Hom(Tc, Sd) ̸= ∅. Consider the example in Figure 2: by homomor-
phic equivalence, we have homS(C,Ma) = homS(C, Nb). This is again
a contradiction, since Ma ̸-d Nb.

(b) If P > 1, then countS(0) = 0S , and countS(n) = π((n−1) mod P )

for n > 0. Then since P k − 1 mod P = P − 1, we have that
homS(Tc,K

P
a ) = π((PK−1) mod P ) = πP−1. Furthermore, since

π0 = 1, P − 1 ̸= 0, and the periodic segment contains no repeated
elements, πP−1 ̸= 1S . Hence homS(Tc,K

1
a) ̸= homS(Tc,K

P
a ).

(iii) If 1S does not occur in π, then homS(Tc,K
n
a ) = nk ̸= 1S for n sufficiently

large. Hence we have homS(Tc,K
1
a) ̸= homS(Tc,K

n
a ).

Since we reach a contradiction in each case, no such class C can exist. 2

7 Discussion

Our positive characterization results, summarized in Figure 4, could also be
seen as characterizations of certain modal equivalence relations, just as our
negative result (Theorem 6.5) was. For example, image-finite LTSs are ML#-
equivalent if and only if there exists a graded bisimulation between them [29].
Similarly, two LTSs are equivalent with respect to nominal-free HL(↓,@) for-
mulas if and only if there is an ω-bisimulation between them [3].

Language Captured by
ML+

3 homB(Tσ,Ma)

ML+,B
3 homB(Aσ,Ma)

ML+,G
3 homB(Fσ,Ma)

ML# homN(Tσ,Ma)
MLB

# homN(Aσ,Ma)

Language Captured by
MLG

# homN(Fσ,Ma)

HL(↓,@) homN(PGσ,Ma)
HLB(↓,@) homN(Cσ,Ma)

ML+ None
ML None

Fig. 4. Summary of Characterization Results.
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Related work. An initial catalyst for investigating a left-profile character-
ization for ML# was recent work by Barcelo et. al. showing that nodes of
undirected graphs are indistinguishable by a special case of GNNs (aggregate-
combine GNNs) if and only if they are graded modal equivalent [8]. Given that
ML# is a syntactic fragment of C2, and that both C2-equivalence and indistin-
guishability by GNNs can be captured by the restriction of the left homomor-
phism vector to the class of undirected trees, this result naturally suggested
that a similar restriction to appropriate classes of trees should capture graded
modal logic, as we have shown (cf. Theorem 4.5).

Sections 3, 4, and 5 provide homomorphism count indistinguishability char-
acterizations using model-theoretic methods. An important line of related work
studies categorical generalizations of Lovász’s original result; early work in this
direction includes [20] and [26]. More recent work on game comonads formalizes
model-comparison games (such as the bisimulation game) in category-theoretic
terms [1,2]. These game comands can be used to derive homomorphism count
indistinguishability results from general categorical results. For example, The-
orem 3.2 is a consequence of a general categorical result proven in [2]. Similarly,
a weaker version of Theorem 4.5, applying to finite structures, was obtained in
[14] using these methods. Categorical and topological arguments were used in
[28] to provide the first Lovász-style results for classes of infinite structures.

Early negative results pertaining to characterizations of logical equivalences
via homomorphism count indistinguishability begin with [5], in this case limited
to negative results with respect to counting done in the Boolean and natural
number semirings. In [23], the authors show that equivalence with respect
to linear-algebraic logic cannot be captured by homomorphism count indistin-
guishability with respect to any class of graphs, both when counting is done in
the natural numbers, and when counting is done in an arbitrary finite prime
field. The present paper goes a step further, using the more general algebraic
structure of semirings as the basis of counting for its negative results.

Future work. Our combinatorial model-theoretic arguments for Theorems
3.2, 4.5, and 5.4 are analogous to earlier results for Lovász-style theorems.
However, the method of lifting these results to extensions of the languages
with backward or global modalities is, to the author’s knowledge, a novel ap-
proach. One future avenue of research would be to generalize these methods to
a categorical setting. Furthermore, while the aforementioned categorical work
has provided interesting sufficient conditions for Lovász-style theorems, there
is not yet a concise necessary condition for a logic to admit such a result. An-
other interesting avenue of research would be to use the insight gained from our
broad negative result in Theorem 6.5 to identify such a condition. A last direc-
tion for future work is to identify modal relations captured by homomorphism
indistinguishability with respect to finite classes of LTSs; these are naturally
related to the notion of homomorphism query algorithms [30].
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