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Abstract. Most research on system design has focused on optimizing efficiency.
However, insufficient attention has been given to the design of systems optimiz-
ing resilience, the ability of systems to adapt to unexpected changes or adversarial
disruptions. In our prior work, we formalized the intuitive notion of resilience as
a property of cyber-physical systems by using a multiset rewriting language with
explicit time. In the present paper, we study the computational complexity of a
formalization of time-bounded resilience problems for the class of η-simple pro-
gressing planning scenarios, where, intuitively, it is simple to check that a system
configuration is critical, and only a bounded number of rules can be applied in a
single time step. We show that, in the time-bounded model with n (adversarially-
chosen) disruptions, the corresponding time-bounded resilience problem for this
class of systems is complete for the ΣP

2n+1 class of the polynomial hierarchy,
PH. To support the formal models and complexity results, we perform automated
experiments for time-bounded verification using the rewriting logic tool Maude.

1 Introduction

Resilience is “the ability of a system to adapt and respond to change (both environ-
mental and internal)” [7]. In recent years, the task of formally defining and analyzing
this intuitive notion has drawn interest across domains in computer science, ranging
from systems engineering [28,32], particularly cyber-physical systems (CPS) [6,26],
to artificial intelligence [34,14,36,17], programming languages [12,20], algorithm de-
sign [15,10], and more. Our previous work in [1] was particularly inspired by Vardi’s
paper [39], in which he articulated a need for computer scientists to reckon with the
trade-off between efficiency and resilience.

In [1], we formalized resilience as a property of timed multiset rewriting (MSR)
systems [24,22], which are suitable for the specification and verification of various
goal-oriented systems. Although the related verification problems are undecidable in
general, it was shown that these problems are PSPACE-complete for the class of bal-
anced systems, in which facts are of bounded size, and rewrite rules do not change
configuration size. A primary challenge in [1] was the formalization of the disruptions
against which systems must be resilient. This was achieved by separating the system
from the environment, delineating between rules applied by the system and those im-
posed on the system, such as changes in conditions, regulations, or mission objectives.



Main Contributions. This paper formalizes the notion of time-bounded resilience. We
focus on the class of η-simple progressing planning scenarios (PPS) and investigate the
computational complexity of the corresponding verification problem. Time-bounded
resilience is motivated by bounded model checking and automated experiments, which
can help system designers verify properties and find counterexamples where their spec-
ifications do not satisfy time-bounded resilience. Moreover, bounded versions of re-
silience problems arise naturally when the missions of the systems being modeled are
necessarily bounded at some level. The main contributions of the paper are as follows.
1. We define time-bounded resilience as a property of planning scenarios. Intuitively,

a resilient system can accomplish its mission within the given time bounds, even in
the presence of a bounded number of disruptions (cf. Definition 11).

2. We investigate the computational complexity of time-bounded resilience problems,
showing that for the class of η-simple PPSs with facts of bounded size [23], the
time-bounded resilience problem with n updates is complete for the ΣP

2n+1 class
of the polynomial hierarchy, PH (Corollary 1).

3. We demonstrate that our formalization can be automated, using the rewriting logic
tool Maude to perform experiments verifying time-bounded resilience (Section 5).

Expository Example. In [1], our study of resilience was motivated by current research
into CPSs that perform complex, safety-critical tasks in hostile and unpredictable envi-
ronments, often autonomously. In this paper, we expand our perspective to consider re-
silience properties of a broad class of multi-agent systems. For expository purposes, we
utilize a running example of a researcher planning travel to attend and present research
at a conference. The system rules represent actions of the researcher, while update rules
represent travel disruptions and changes to the conference organization. Ultimately, the
travel planning process is pointless if the researcher does not arrive at his destination
in time for the main event. Consequently, the researcher desires to establish a resilient
plan, which will allow him to accomplish his goal in spite of some bounded number of
disruptions. Details of this planning scenario will be developed throughout Section 2,
and our Maude implementation in Section 5 will be used to analyze its resilience.

Outline. Section 2 reviews the timed MSR framework used in Section 3 to define
time-bounded resilience. In Section 4, we investigate the complexity of the verifica-
tion problem. Section 5 showcases our results on automated verification obtained using
Maude. In Section 6, we conclude with a discussion of related and future work.

2 Multiset Rewriting Systems

In this section, we review the framework of timed MSR models introduced in our pre-
vious work [21,23,24].

2.1 The Rewriting Framework
Terms and Formulas. We fix a finite first-order alphabet Σ with constant, function,
and predicate symbols, together with a finite set B of base types. Each constant is asso-
ciated with a unique base type, and we write ΣCons to denote the set of all constants in
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Σ. Each predicate symbolR (resp. function symbol f ) is associated with a unique tuple
type (resp. arrow type) b1× . . .× bk (resp. b1× . . .× bk → b), where b1, . . . , bk, b ∈ B
and k is the arity of R (resp. f ). We also assume that Σ contains a special predicate
symbol Time with arity zero (more on this later).

We fix sets VFO of (first-order) variables and G of ground constants, disjoint from
each other and from Σ, where each element in VFO ∪ G has an associated base type in
B. We further assume that VFO and G each contain countably infinitely-many elements
associated to each base type. These ground constants will be used to instantiate variables
“created” by rewrite rules. Terms over Σ are constructed according to the grammar

t := x | c | f(t1, . . . , tk),

where x is in VFO, c is in ΣCons, f is a function symbol of type b1 × . . .× bk → b, and
each ti is a term of type bi for i ≤ k (in which case f(t1, . . . , tk) is a term of type b).
Ground terms over Σ are constructed similarly:

a := d | c | f(a1, . . . , ak),

where d is in G, c is inΣCons, f is a function symbol of type b1× . . .×bk → b, and each
ai is a ground term of type bi for i ≤ k (in which case f(a1, . . . , ak) is a ground term
of type b). We write GTerms for the collection of ground terms over Σ. If R is a predicate
symbol of type b1 × . . . × bk and t1, . . . , tk are terms of type b1, . . . , bk, respectively,
then R(t1, . . . , tk) is an atomic formula. Similarly, if a1, . . . , ak are ground terms of
type b1, . . . , bk, respectively, then R(a1, . . . , ak) is an atomic fact (or just fact).

Modeling Discrete Time. We fix a countably infinite set VTime = {Ti | i ∈ N} of time
variables. Timestamped atomic formulas are of the form F@(T + D), where F is an
atomic formula, T is a time variable, and D is a natural number; note that if D = 0,
we prefer to write F@T instead of F@(T + 0). Timestamped facts are of the form
F@t, where F is an atomic fact and t ∈ N is its timestamp. For brevity, we frequently
refer to timestamped facts simply as facts. Clearly, given a timestamped atomic formula
F@(T +D), we can obtain a timestamped fact G@t by uniformly substituting ground
terms for variables in F and setting t = N +D for some natural number N .

Configurations and Rewrite Rules. Configurations are multisets of timestamped facts
S = {Time@t, F1@t1, . . . , Fn@tn} with exactly one occurrence of a Time fact whose
timestamp t is the global time in S . We write Values(S) to denote the set of all ground
terms and timestamps occurring in S. Configurations are modified by multiset rewrite
rules. Only one rule, Tick, modifies global time:

Time@T −→ Time@(T + 1) (1)

where T is a time variable. The Tick rule modifies a configuration to which it is applied
by advancing the global time by one. The remaining rules are instantaneous in that they
do not modify the global time but may modify the remaining facts of a configuration.
Instantaneous rules are given by expressions of the form

Time@T,W, F1@T1, . . . Fn@Tn | C
−→ Time@T,W, Q1@(T +D1), . . . Qm@(T +Dm)

(2)
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where W (the side condition of the rule) is a multiset of timestamped atomic formu-
las, Fi@Ti is a timestamped atomic formula for each i ≤ n, and Qj@(T + Dj) is
a timestamped atomic formula for each j ≤ m. The precondition of the rule is the
multiset {Time@T} ∪ W ∪ {Fi@Ti | i ≤ n}, while its postcondition is the multiset
{Time@T} ∪ W ∪ {Qj@(T + Dj) | j ≤ m}. We require that no atomic formula in
the multiset {Fi@Ti | i ≤ n} appears with the same multiplicity as it appears in the
multiset {Qj@(T +Dj) | j ≤ m}. Furthermore, no timestamped atomic formulas con-
taining the predicate Time can occur in {Fi@Ti | i ≤ n} ∪ {Qj@(T +Dj) | j ≤ m}.
The guard C of the rule is a set of time constraints of the form

T1 > T2 ±N or T1 = T2 ±N,

where T1 and T2 are time variables and N ∈ N is a natural number; all constraints in C
must involve only the time variables occurring in the rule’s precondition.

A ground substitution is a partial map σ : VFO ∪ VTime → GTerms ∪ N which maps
first-order variables to ground terms and time variables to natural numbers. Given a
multiset W of timestamped atomic formulas, we write Wσ to denote the multiset of
timestamped facts obtained by simultaneously substituting all first-order variables and
time variables in W with their image under σ. Given a set C of time constraints with
time variables from W , we say that Cσ is satisfied if each time constraint in C evalu-
ates to true for the substituted timestamps. Given a multiset W of timestamped atomic
formulas, we write Var(W ) to denote the set of first-order variables and time variables
occurring in W . Given an instantaneous rule r given by W | C −→ W ′, we write
Fresh(r) to denote the set Var(W ′) \ Var(W ).

A ground substitution matching an instantaneous rule r given byW | C −→W ′ to a
configuration S is a ground substitution σ with dom(σ) = Var(W ∪W ′) such that every
element of Var(W ) is mapped to an element in Values(S), and the restriction of σ to
Fresh(r) is an injective map whose range is contained in G \Values(S). In other words,
σ assigns first-order variables (resp. time variables) occurring in W to ground terms
(resp. timestamps) occurring in S, and each distinct first-order variable in Fresh(r) to a
fresh ground constant which does not occur in S.

An instantaneous rule r given by W | C −→ W ′ is applicable to a configuration
S if there exists a ground substitution matching r to S such that Wσ ⊆ S and Cσ
is satisfied; in this case, we refer to the expression rσ given by Wσ | Cσ −→ W ′σ
as a instance of the rule r. The result of applying the rule instance rσ to S is the
configuration (S \Wσ)∪W ′σ. IfW is the side condition of r, and T is the global time
in S, then we say that the timestamped facts occurring in (W \ (W ∪ {Time@T}))σ
are consumed, while those in (W ′ \ (W ∪ {Time@T}))σ are created. Note that a fact
for the predicate Time is never created by an instantaneous rule. We write S −→r S ′
for the one-step relation where the configuration S is rewritten to S ′ using an instance
of the rule r. It is worth emphasizing, at this point, that configurations are grounded,
while rewrite rules are symbolic.

Some examples. We now give some examples to elucidate our formalism. Consider
the alphabet containing the predicate symbols Time, At, Event, Attended, and FlightD
(where D ∈ {1, . . . , 12}), and the constant symbols no, done, main, airport, center,
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id14, and id215. Recall that, in our expository example, we are modeling a researcher
with a goal of traveling to attend a conference. We interpret the timestamped atomic
formula FlightD(id, c1, c2)@T to mean that the flight with flight id id from city c1 to
city c2 departs at time T and has a duration of approximately D hours.

The timestamped fact At(FRA, center)@0 is interpreted to mean that the researcher
is at Frankfurt city center at the initial time step 0. For this scenario, each time step
is interpreted as the passage of one minute. For ease of readability, we adopt a more
convenient representation of timestamps, with 0 denoting midnight on the initial day
of the planning scenario. Then, we write Time@(3d 14:42) to indicate that the current
time is 14:42 on the 3rd day of the scenario. We do this is in lieu of writing the more
burdensome timestamp Time@5202. The fact Event(main, id215)@(5d 12:00) specifies
that the main event of the conference, with event identifier 215, will take place at noon
on the 5th day. Bringing this all together, consider the following configuration.

{Time@(3d 14:42),Attended(main, no)@0, At(FRA, airport)@(3d 14:05),
Event(main, id215)@(5d 12:00),Flight2(id14,FRA,DBV)@(3d 15:25)} (3)

This configuration describes a state of the system. The time is 14:42 on the 3rd day
of the scenario, and the researcher arrived at Frankfurt airport (FRA) at 14:05. The main
event of the conference is at noon in two days in Dubrovnik (DBV), and has, obviously,
not yet been attended by the researcher. Flight id14 is a direct flight from Frankfurt to
Dubrovnik, which departs at 15:25 and has a duration of approximately two hours.

In addition to modeling states of the system via configurations, we also want our
formalism to be able to model actions taken by the researcher, such as boarding a given
flight. To this end, consider the rule

Time@T,Flight2(a, x, y)@T1,At(x, airport)@T2, | T = T1, T2 + 30 ≤ T
−→ Time@T,Flight2(a, x, y)@T1,At(y, airport)@(T + 120),

(4)

with side condition {Flight2(a, x, y)@T1}. This rule means that if the departure time
of a two-hour flight with flight id a from city x to city y will depart at time T , and the
researcher is at the airport in city x at time T2, where T2 is at least 30 minutes prior to
T , then he can take the flight, arriving at the airport in city y after two hours.

Note that the rule (Eq. 4) is not applicable to the configuration (Eq. 3). In particular,
the time constraint T = T1 cannot be satisfied by any ground assignment for the rule
to the configuration. However, rule (Eq. 4) is applicable to the configuration resulting
from the successive application of 43 Tick rules to configuration (Eq. 3), which results
in the same configuration, except with the timestamp for Time updated to (3d 15:25)
(i.e., the departure time of the flight). Then the ground substitution σ given by

σ(T ) = 3d 15:25 σ(a) = id14

σ(T1) = 3d 15:25 σ(x) = FRA

σ(T2) = 3d 14:05 σ(y) = DBV

applied to the rule (Eq. 4) yields an instance which can be applied to configuration
(Eq. 3), resulting in the following configuration:

{Time@(3d 15:25),Attended(main, no)@0, At(DBV, airport)@(3d 17:25),
Event(main, id215)@(5d 12:00),Flight2(id14,FRA,DBV)@(3d 15:25)}. (5)
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Timed MSR Systems. We now turn to the timed MSR systems introduced in [24].

Definition 1. A timed MSR system A is a set of rules containing only instantaneous
rules (Eq. 2) and the Tick rule (Eq. 1).

A sequence of consecutive rule applications represents an execution or process
within the system. A trace of timed MSR rules A starting from an initial configura-
tion S0 is a sequence of configurations: S0 −→ S1 −→ S2 −→ · · · −→ Sn, such that
for all 0 ≤ i ≤ n− 1, Si −→ri Si+1 for some ri ∈ A. For our complexity results, we
assume traces are annotated with the rule instances used to obtain the next configuration
in the trace, so valid traces can be recognized in polynomial time (cf. Remark 4).

Reachability problems for MSR systems are to determine whether or not a trace
from some initial configuration to some specified configuration exists. In general, these
problems are often undecidable[24], and so restrictions are imposed in order to obtain
decidability5. In particular, we use MSR systems with only balanced rules.

Definition 2 (Balanced Rules, [24]). A timed MSR rule is balanced if the numbers of
facts on left and right sides of the rule are equal.

Systems containing only balanced rules represent an important class of balanced sys-
tems, for which several reachability problems have been shown to be decidable [23].
Balanced systems are suitable, e.g., for modeling scenarios with a fixed amount of total
memory. Balanced systems have the following important property:

Proposition 1 ([23]). Let R be a set of balanced rules. Let S0 be a configuration with
exactly m facts (counting multiplicities). Let S0 −→ · · · −→ Sn be an arbitrary trace
ofR rules starting from S0. Then for all 0 ≤ i ≤ n, Si has exactly m facts.

2.2 Progressing Timed Systems

In this section, we review a particular class of timed MSR systems, called progressing
timed MSR systems (PTSs) [21,22], in which only a bounded number of rules can be
applied in a single time step. This is a natural condition, similar to the finite-variability
assumption used in the temporal logic and timed automata literature [18].

Definition 3 (Progressing Timed System, [21]). An instantaneous rule r of the form
in (Eq. 2) is progressing if the following all hold: i) n = m (i.e., r is balanced); ii) r
consumes only facts with timestamps in the past or at the current time, i.e., in (Eq. 2),
the set of constraints C of r contains the set Cr = { T ≥ Ti | Fi@Ti, 1 ≤ i ≤ n };
iii) r creates at least one fact with timestamp greater than the global time, i.e., in (Eq. 2),
Di ≥ 1 for at least one i ∈ {1, . . . , n}. A timed MSR system A is a progressing timed
MSR system (PTS) if all instantaneous rules of A are progressing.

Note that the rule (Eq. 4) is progressing. A timestamped fact in a configuration S is
a future fact if its timestamp is strictly greater than the timestamp of the Time@t fact
in S. Future facts are “not available” in the sense that they cannot be consumed by a
progressing rule before a sufficient number of Tick rule applications.

Remark 1. For readability, we assume the set of constraints for all rules r, contains the
set Cr, as in Definition 3, and do not always write Cr explicitly.

5 For a discussion of various conditions in the model that may affect complexity, see [23,24].
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2.3 Timed MSR for the specification of resilient systems

We now review additional notation for the purpose of specifying resilience, as intro-
duced in [1]. The resilience framework divides the system from an external entity, such
as the environment, regulatory authorities, or an adversary. We model various types of
disruptive changes to the system state or goals.

Definition 4 (Planning Configuration, [1]). Let ΣP = ΣG ] ΣC ] ΣS ] {Time}
consist of four pairwise disjoint sets of predicate symbols, ΣG, ΣC , ΣS and {Time}.
Facts constructed using predicates fromΣG are called goal facts, fromΣC critical facts,
and fromΣS system facts. Facts constructed using predicates fromΣC ∪ΣG are called
planning facts. Configurations over ΣP predicates are called planning configurations.

For readability, we underline predicates in planning facts and refer to planning con-
figurations as configurations for short. The behavior of the system is represented by
traces of MSR rules. A system should achieve its goal while not violating predeter-
mined critical conditions. This is made precise in the following two definitions.

Definition 5 (Critical/Goal Configurations, [1]). A critical (resp. goal) configuration
specification CS (resp. GS) is a set of pairs {〈S1, C1〉, . . . , 〈Sn, Cn〉}, with each pair
〈Sj , Cj〉 being of the form 〈{F1@T1, . . . , Fpj

@Tpj
}, Cj〉, where T1, . . . , Tpj

are time
variables, W = {F1, . . . , Fpj

} is a multiset of timestamped atomic formulas, with
at least one occurrence of a critical (resp. goal) predicate symbol, and Cj is a set of
time constraints involving only variables T1, . . . , Tpj . A configuration S is a critical
configuration w.r.t. CS (resp. a goal configuration w.r.t. GS) if for some 1 ≤ i ≤ n,
there is a grounding substitution σ with dom(σ) = Var(W ) such that Siσ ⊆ S and Ciσ
is satisfied.

Definition 6 (Compliant Traces, [1]). A trace is compliant with respect to a critical
configuration specification CS if it does not contain any critical configuration w.r.t. CS .

Note that critical configuration specifications and goal configuration specifications,
like rewrite rules, are symbolic. Reaching a critical configuration may be interpreted
as a safety violation, while a compliant trace may be interpreted as a safe trace. As an
example, suppose that in the example alphabet introduced earlier, the predicate symbol
Attended is in ΣC , while the predicate symbol Event is in ΣG. Then the goal configu-
ration specification

{〈{Attended(main, done)@T1,Event(main, x)@T2}, ∅〉}

indicates that the main event should be attended, while the critical configuration speci-
fication

{〈Time@T,Attended(main, no)@T1,Event(main, x)@T2}, {T > T2}〉}

denotes that it is critical not to participate in the main event.
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Definition 7 (System Rules and Update Rules, [1]). Fix a planning alphabet ΣP . A
system rule is either the Tick rule (Eq. 1) or a rule of form in (Eq. 2) which does not
consume or create planning facts. An update rule is an instantaneous rule that is of
one of the following types: (a) a system update rule (SUR) such that planning facts can
only occur in the side condition of the rule; or (b) a goal update rule (GUR) that either
consumes or creates at least one goal fact and such that critical facts can only occur in
the side condition of the rule.

For example, the following system rule specifies that the traveler needs 40 minutes to
get from the departing city center to the airport:

Time@T, At(x, center)@T1 | T1 ≤ T
−→ Time@T,At(x, airport)@(T + 40).

The rule (Eq. 4) is another example of a system rule. System rules specify the be-
havior of the system, while disruptions are modeled via update rules. Intuitively, GUR
model external interventions in the system, such as mission changes, additional tasks,
etc., while SUR model changes in the system that are not due to the intentions of the
system’s agents, e.g., technical errors or malfunctions such as flight delays. Both goal
and system update rules can create and/or consume system facts, which technically sim-
plifies modeling the impact of changes on the system and its response. For example, the
following GUR models a change in the scheduled time of the main event.

Time@T, Event(main, x)@T1,−→ Time@T,Event(main, x)@(T + 60),

while the following SUR models a 30-minute flight delay:

Time@T,FlightD(a, x, y)@T1 −→ Time@T,FlightD(a, x, y)@(T + 30).

Definition 8 (Planning Scenario, [1]). IfR and E are sets of system and update rules,
GS and CS are a goal and critical configuration specifications, and S0 is an initial
configuration, then the tuple (R,GS, CS, E ,S0) is a planning scenario.

Definition 9 (Progressing Planning Scenario (PPS)). We say that a planning scenario
(R,GS, CS, E ,S0) is progressing if all rules inR and E are progressing.

The progressing condition in Definition 9 implies a bound on the number of rules
that can be applied in a single unit of time (cf. Proposition 2). We also assume an
upper-bound on the size of facts allowed to occur in traces, where the size of a times-
tamped fact F@t is the number of symbols fromΣ occurring in F , counting repetitions.
Without this bound (among other restrictions), many interesting decision problems are
undecidable [13,23]. We also confine attention to classes of η-simple PPSs.

Definition 10. Let η denote a fixed positive integer. We say that a planning scenario
A = (R,GS, CS, E ,S0) is η-simple if the total number of variables (including both
first-order and time variables) appearing in each pair 〈Si, Ci〉 in CS is less than η.

For every planning scenarioA = (R,GS, CS, E ,S0), there exists some least η such that
A is η-simple; intuitively, this η is a measure of the complexity of verifying compliance
of traces with respect to CS . Proposition 4 in Section 4 makes this intuition precise.

Remark 2. By inspecting the rules and the critical configuration specification, it is easy
to check that our expository travel example is 3-simple and progressing.
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3 Time-bounded Resilience Verification Problems

In this section, we formalize time-bounded resilience as a property of planning scenar-
ios. Intuitively, we want to capture the notion of a system which can achieve its goal
within a fixed amount of time, despite the application of up to n instances of update
rules. An initial idea might be to require that the system can achieve its goal in the
allotted time, regardless of when updates are applied. However, this is too restrictive:
many systems will fail to achieve their goal in the face of adversarial actions which can
be applied arbitrarily often. Instead, the system will have a+ b time units to achieve its
goal, and update rules can only be applied in the first a time steps; the last b time steps
are the recovery time afforded to the system.

Definition 11 (The (n, a, b)-resilience problem). Let a ∈ Z+ and b ∈ N. We define
(n, a, b)-resilience by recursion on n. Inputs to the problem are planning scenariosA =
(R,GS, CS, E ,S0). A trace is (0, a, b)-resilient with respect to A if it is a compliant
trace ofR rules from S0 to a goal configuration and contains at most a+b applications
of the Tick rule. Let t0 denote the global time in the configuration S0. For n > 0, a trace
τ is (n, a, b)-resilient with respect to A if

1. τ is (0, a, b)-resilient with respect to A, and
2. for any system or goal update rule r ∈ E such that Si −→r S ′i+1 for some configu-

ration Si in τ with global time ti, where di = ti − t0 ≤ a, there is a reaction trace
τ ′ ofR rules from S ′i+1 to a goal configuration S ′ such that τ ′ is (n−1, a−di, b)-
resilient with respect to A′ = (R,GS, CS, E ,S ′i+1).

A planning scenarioA = (R,GS, CS, E ,S0) is (n, a, b)-resilient if an (n, a, b)-resilient
trace with respect to A exists. The (n, a, b)-resilience problem is to determine if a given
planning scenario A is (n, a, b)-resilient.

Figure 1 provides a visual depiction of Definition 11.

τ : S0 . . . Si . . . Sk

τ ′ : S ′
i+1

. . . S ′

r

di (≤ a)

≤ a− di + b

Fig. 1: An (n, a, b)-resilient trace τ and an (n − 1, a − di, b)-resilient reaction trace
τ ′. The horizontal arrows correspond to system rule applications, while the downward-
facing arrow represents an update rule application. The configurations Sk and S ′ on the
far right are goal configurations.
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The reaction trace τ ′ in Definition 11 can be interpreted as a change in the plan τ ,
made in response to an external disruption (i.e., the system/goal update rule r) imposed
on the system. Note that it is this “replanning” aspect of our definition that intuitively
distinguishes it from the related notion of robustness.

Remark 3. In Definition 11, the global time t′ in S ′ satisfies t′ − t0 ≤ a + b; i.e.,
despite the application of n instances of update rules, an (n, a, b)-resilient trace reaches
a goal within a + b time units. Furthermore, observe that a trace is (n, a, b)-resilient
with respect to a planning scenario A if and only if it is (n, a, b′)-resilient with respect
toA for all b′ ≥ b. Similarly, all (n, a, b)-resilient traces with respect toA are (n′, a, b)-
resilient with respect to A for all n′ ≤ n.

It is worthwhile to note that Definition 11 can be seen as a modification of [1,
Definitions 9-10], in which (i) we include the parameters a and b, (ii) we consider both
system and goal update rules simultaneously, and (iii) the recoverability condition,
which is not mentioned in this work, is the total relation on configurations of A.

4 Computational Complexity of Time-Bounded Resilience

In this section, we state and prove our results on the computational complexity of the
time-bounded resilience problem defined in Section 3. To see this, we first state a known
bound on the number of instances of instantaneous rules appearing between two con-
secutive instances of Tick rules in a trace of only progressing rules.

Proposition 2 ([21]). Let R be a set of progressing rules, S0 an initial configuration,
and m the number of facts in S0. For all traces τ ofR rules starting from S0, let

Si −→Tick Si+1 −→ · · · −→ Sj −→Tick Sj+1

be any subtrace of τ with exactly two instances of the Tick rule, one at the beginning
and the other at the end. Then j − i ≤ m.

Proposition 2 guarantees that the lengths of (n, a, b)-resilient traces of a PPS A are
polynomially-bounded in the size of the input representation of A.

Proposition 3. Let A = (R,GS, CS, E ,S0) be a PPS and m be the number of facts in
S0. Then the length of any (n, a, b)-resilient trace of A is bounded by (a+ b+ 1)m.

In preparation for our (n, a, b)-resilience upper bound result (Theorem 1), we now
turn to the complexity of some fundamental decision problems pertaining to planning
scenarios. We only state the problems and their complexity for η-simple PPSs with facts
of bounded size; more detail can be found in the technical report [3].

Definition 12. The goal (resp. critical) recognition problem is to determine, given a
planning scenario A = (R,GS, CS, E ,S0) and a configuration S, whether or not S is
a goal (resp. critical) configuration w.r.t. GS (resp. CS); cf. Definition 5.

More broadly, we are interested in checking trace compliance.
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Definition 13. The trace compliance problem is to determine, given a planning sce-
nario A = (R,GS, CS, E ,S0) and a trace τ of R-rules starting from S0, whether or
not τ is compliant w.r.t. CS (cf. Definition 6).

They key observation, and the one underlying our restriction to η-simple PPSs (cf.
Definition 10), is that the trace compliance problem is tractable for this class.

Proposition 4. For η-simple planning scenarios, the trace compliance problem is in P.

Remark 4. If A = (R,GS, CS, E ,S0) is an η-simple PPS, and S a configuration with
the same number of facts as S0, then given an appropriate ground substitution, we can
verify in polynomial time in the size of A that S is a goal configuration w.r.t. GS . In the
proof of Theorem 1, for ease of exposition, we will also assume that these ground sub-
stitutions come with a pointer to the appropriate pair 〈Si, Ci〉 in GS to which the substi-
tution should be applied. Furthermore, given an arbitrary PPS A = (R,GS, CS, E ,S0),
if S is a configuration with the same number of facts as S0, then given an appropriate
ground substitution, we can verify in polynomial time in the size of A that S is a goal
configuration w.r.t. CS . Similarly, given an appropriate ground substitution, we can ver-
ify in polynomial time in the size of A that a rule r is applicable to S, and whether or
not S ′ is the result of this application.

We now turn our attention to the computational complexity of the (n, a, b)-resilience
problem. To establish our complexity results, we will utilize the quantifier-alternation
characterization of PH (cf. [2,38,35]), according to which a decision problem is in ΣP

n

(for n odd) if and only if there exists a polynomial-time algorithm M such that an input
x is a yes instance of the problem if and only if

∃u1∀u2∃u3 . . . ∀un−1∃un M(x, u1, . . . , un) accepts,

where the ui are polynomially-bounded in the size of x. We now establish an upper
bound on the complexity of the (n, a, b)-resilience problem (cf. Definition 11).

Theorem 1. For η-simple PPSs with traces containing only facts of bounded size and
all a ∈ Z+ and n, b ∈ N, there exists a decision procedure of complexity ΣP

2n+1 for the
(n, a, b)-resilience problem.

Proof. We show by induction on n that, for each a ∈ Z+ and b ∈ N, there exists a
polynomial-time algorithm Ma,b

n such that an η-simple PPS A = (R,GS, CS, E ,S0) is
(n, a, b)-resilient if and only if

∃T0∀ρ1∃T1 . . . ∀ρn∃Tn Ma,b
n (A, τ0, τ1, . . . , τn, ρ1, . . . , ρn) accepts. (6)

The existentially quantified variables Ti range over triples of the form (τi, σi, ji), where
τi is a trace of R-rules and σi is a ground substitution from 〈Sji , Cji〉 in GS to the last
configuration of τi. By Proposition 3, such a witness Ti is polynomially-bounded in the
size of the input representation of A. The universally quantified variables ρi range over
triples of the form (ri, σi, ji), where ri ∈ E and σi is a ground substitution from the jthi
configuration of τi−1 to the first configuration of τi. The witnesses ρi are also clearly
polynomially-bounded in the size of the input representation of A.
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For the base case, the algorithm Ma,b
0 first verifies that A meets the syntactic re-

quirements of an η-simple PPS. If so, then we verify, given T0 = (τ0, σ0, j0), that τ0
has at most a + b applications of the Tick rule, is compliant, and leads to a goal. By
Proposition 4, since τ0 is polynomially-bounded in A, we can verify compliance of τ0
in polynomial time in A. By Remark 4, we can verify in polynomial time in A, given
(σ0, j0), that the last configuration of τ0 is a goal. Hence Ma,b

0 (A, T0) runs in polyno-
mial time, and A is (0, a, b)-resilient if and only if ∃T0 Ma,b

0 (A, T0) accepts.
Now suppose inductively that we have, for each a′ ∈ Z+ and b′ ∈ N, algorithms

Ma′,b′

k satisfying (Eq. 6) with n = k. Fix some a ∈ Z+ and b ∈ N, and we define an
algorithm Ma,b

k+1 which takes inputs of the form (A, T , T ′, T1, . . . , Tk, ρ, ρ1, . . . , ρk).
Let T = (τ, σ, j), T ′ = (τ ′, σ′, j′), and ρ = (r, σ∗, i). Furthermore, let t0 denote the
global time in the initial configuration S0, |τ | denote the length of τ , S ′i+1 denote the
initial configuration of τ ′, ti denote the global time in the ith configuration Si of τ , and
di = ti − t0. We now describe the run of Ma,b

k+1 on this input.
First, check that τ and τ ′ are compliant traces to a goal configuration. Then, check

if di ≤ a; if this check fails, then we halt and accept, since by Definition 11, up-
date rules cannot be applied after more than a time steps. Then, check if Si −→r

S ′i+1, by applying the ground substitution σ∗ to r and checking that it is applica-
ble to Si. If this checks fails, then we halt and accept, since r is not an applicable
update rule to Si. Otherwise, check that S ′i+1 is the correct result of applying this
instance of r to Si. If this check fails, then reject, since τ ′ cannot be a valid reac-
tion trace. Finally, let A′ = (R,GS, CS, E ,S ′i+1), and simulate Ma−di,b

k on the input
(A′, T ′, T1, . . . , Tk, ρ1, . . . , ρk). If the result of this simulation is that Ma−di,b

k accepts
the input, then we halt and accept, since by the inductive hypothesis, τ ′ must be a
(k, a− di, b)-resilient reaction trace. Otherwise, we reject.

Taking into account the inductive hypothesis and Remark 4, it is clear that Ma,b
k+1

runs in polynomial time in the size of its input. Furthermore, it follows immediately by
inspection of Definition 11 that A is (k + 1, a, b)-resilient if and only if

∃T0∀ρ1∃T1 . . . ∀ρk+1∃Tk+1 M
a,b
k+1(A, T , T1, . . . , Tk+1, ρ, ρ1, . . . , ρk+1) accepts.

This concludes the inductive argument. It follows immediately from the quantifier-
alternation characterization of PH that the (n, a, b)-resilience problem for η-simple
PPSs with traces containing only facts of bounded size is in ΣP

2n+1. ut

Remark 5. Even without assuming η-simplicity, a slight variation of the above argu-
ment gives a decision procedure of complexity ΣP

2n+2 for the (n, a, b)-resilience prob-
lem for PPSs with traces containing facts of bounded size. To modify the argument, we
allow each universal quantifier to range over an additional ground substitution, which
is used in the verification algorithm Ma,b

n to check that an arbitrary configuration in the
preceding witness trace is non-critical. Note that this check can be done in polynomial
time (cf. Remark 4). If this check succeeds for all configurations and all all such ground
substitutions, then every witness trace is compliant.

In fact, even for 1-simple PPSs, the (n, a, b)-resilience problem is ΣP
2n+1-hard. We

show this by a reduction from Σ2n+1-SAT, the language of true quantified Boolean for-
mulas (QBF) with 2n+ 1 quantifier alternations, where the first quantifier is existential
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and the underlying propositional formula is in 3-CNF form. This problem is known
to be ΣP

2n+1-complete [38]. Recall that the truth of a quantified Boolean formula can
be analyzed by considering the QBF evaluation game for the formula. In this game,
two players, Spoiler and Duplicator, take turns choosing assignments to the formula’s
quantified variables. Duplicator chooses assignments for existentially-quantified vari-
ables with the goal of satisfying the underlying Boolean formula, while Spoiler chooses
assignments for universally-quantified variables with the goal of falsifying it. The game
concludes once assignments have been chosen for all of the quantified variables. A QBF
ψ is true if and only if Duplicator has a winning strategy in this game [35].

In our reduction, we encode the positions of this QBF evaluation game into config-
urations, where a position of the QBF evaluation game for a formula

ψ := ∃v1∀v2∃v3 . . . ∀v2n∃v2n+1ϕ(v1, v2, v3, . . . , v2n+1)

is a sequence P = V1, . . . , Vj of assignments to the variables in v1, . . . , vj for some
j ≤ 2n+ 1. If j is even, then we say that the position P belongs to Duplicator; other-
wise, we say that it belongs to Spoiler. The player who owns a given position makes the
next move, choosing an assignment for the variables in the tuple vj+1. We use system
rules to model assignments made by Duplicator, while update rules are used to model
assignments made by Spoiler. Intuitively, the goal configurations are those positions of
the game which encode assignments satisfying the underlying formula ϕ.

Theorem 2. For all a ∈ Z+ and b ∈ N, there exists a polynomial-time reduction from
theΣ2n+1-SAT problem to the (n, a, b)-resilience problem. Furthermore, the computed
instance is always a 1-simple progressing planning scenario with traces containing only
facts of bounded size.

Proof (sketch). Let ψ := ∃v1∀v2∃v3 . . . ∀v2n∃v2n+1ϕ(v1, v2, v3, . . . , v2n+1) be an
instance of Σ2n+1-SAT, where the vi are tuples of variables and ϕ is a 3-CNF formula.
We can compute a 1-simple progressing planning scenario A = (R,GS, CS, E ,S0)
which is (n, a, b)-resilient if and only if ψ is true. To do this, the initial configuration
S0 contains 0-ary facts of the form Unki which indicate that the assignment to vi is
unknown, for each 1 ≤ i ≤ 2n + 1. We also include a 0-ary fact Rnd0 indicating that
no rounds of the QBF game have been played, and a 0-ary fact corresponding to each
clause of ϕ. This represents the initial position of the QBF evaluation game.

We include system (resp. update) rules corresponding to assignments to the vi tuples
of variables for even (resp. odd); these rules consume the fact Unki and create facts of
the form V ali(b), where b is a tuple Boolean values (true or false). These rules simu-
late moves of the QBF evaluation game, and change the configuration to represent the
next position of the game. Furthermore, each rule of this kind can only be played when
the appropriate Rndi fact is in the current configuration, and it increments the round
counter from Rndi to Rndi+1. This ensures that the players can only choose assign-
ments from positions that belong to them. We also include “verification” rules, which
are used to check if the assignment after the conclusion of the game (encoded by the
V ali facts) satisfies ϕ. The goal configurations are those in which the final assignment
has been verified to satisfy ϕ.
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This encoding does not depend on the parameters a and b of the resilience problem:
A admits an (n, 1, 0)-resilient trace if and only if it admits an (n, a, b)-resilient trace
for all a ∈ Z+ and b ∈ N. It follows easily from the simulation of the QBF evaluation
game that, for all a ∈ Z+ and b ∈ N, A is (n, a, b)-resilient if and only if Duplicator
has a winning strategy for the QBF evaluation game for the formula ψ. ut

A detailed specification of the reduction can be found in the technical report [3].

Corollary 1. The (n, a, b)-resilience problem for η-simple PPSs with traces containing
only facts of bounded size is ΣP

2n+1-complete.

5 Verifying Resilience in Maude

To experiment with resilience, we specified our running example of a travel planning
scenario in the Maude rewriting logic language [11]. In contrast to the multiset rewrit-
ing representation, the Maude specification uses data structures, not facts, to represent
system structure and state. The passing of time is modeled using rule duration. For ex-
ample, the rule that models taking a flight takes time according to the duration of the
flight. These rules combine an instantaneous rule with a time-passing rule. These de-
sign decisions, together with relegating as much as possible to equational reasoning,
help reduce the search state space.

In the travel system scenarios, the goal is to attend a given set of events. System
updates change flight schedules; goal updates either change event start time or duration,
or add an event. Execution traces terminate when the last event is attended or an event
is missed. Thus, for simplicity, we fix a+ b to be the end of the last possible event and
leave it implicit. In the following, we describe the representation of key elements of the
travel system specification: system state, execution rules, and updates. We then explain
the algorithm for checking (n, a, b)-resilience and report on some simple experiments.

Representing travel status. The two main sorts in the travel system specification are
Flight and Event. A term fl(cityD,cityA,fn,depT,dur) represents a flight,
where cityD and cityA are the departure and arrival cities, fn is the flight number
(a unique identifier), depT is the departure time, and dur is the duration. The de-
parture time and duration are represented by hour-minute terms hm(h,m). For sim-
plicity, flights are assumed to go at the same time every day, and all times are in
GMT. A flight instance (sort FltInst) represents a flight on a specific date by a term:
fi(flt,dtDep,dtArr) where flt is a flight, dtDep and dtArr are date-time terms
representing the date and time of departure and arrival respectively. A date-time term
has the form dt(yd,hm) where yd is a year-day term yd(y,d) and hm is an hour-
minute term as above.

An event is represented by a term ev(eid,city,loc,yd,hm,dur,opt), where
eid is a unique (string) identifier and the opt Boolean specifies if the event is optional;
the other arguments are as above. A term of the form {conf} (sort Sys), where conf
(sort Conf) is a multiset of configuration elements, represents a system execution state.
The sorts of configuration elements are TConf, Log, and update descriptions. Terms of
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sort TConf represent a traveler’s state, with one of three forms:
tc(dt,city,loc,evs) – planning
tc(dt,city,loc,evs,ev,fltil) – executing
tcCrit(dt,city,loc,evs,ev,reason) – critical

Here, dt is a date-time term, the travelers current date and time, and city tells what
city the traveler is currently in. The term loc gives the location within the city, either
the airport or the city center. The term evs is the set of events to be attended, while
ev is the next event to consider. The term fltil is the flight instance list chosen to get
from city to the location of ev. The constructor tcCrit signals a critical configuration
in which a required event has been missed.

An update description is a term of the form di(digs) or di(digs,n) where digs
is a set of digressions. Each digression describes an update to be applied by an update
rule, and n bounds the number of updates that can be applied. Two kinds of updates are
currently implemented: flight/system updates and event/goal updates. The flight updates
are: cancel, which cancels the current flight, delay(hm(h,m)), which delays the cur-
rent flight by h hours, m minutes, and divert(city0,city1), which diverts the cur-
rent flight from city0 to city1, where the current flight is the first element of the flight
instance list of an executing TConf term. The event/goal updates are: edEvS(hm(h,m),
which starts the current event h hours, m minutes earlier, edEvD(hm(h,m)), which ex-
tends the current event duration by h hours, m minutes, and addEv(eid), which adds
the event with id evid to the set of pending events.

Flight updates are only applied to the next flight the traveler is about to take. Sim-
ilarly, the changes in event start time or duration are only applied to the next event
to attend. This is a simplified setting, but sufficiently illustrates our formalism; more
complex variations are possible. Lastly, an element of sort Log is a list of log items.
It is used to record updates, flights taken, and events attended or missed. Among other
things, when searching for flights, it is used to know which flights have been canceled.

Rewrite rules. There are five system rules (plan, noUFlts, flt, event, and replan)
and two update rules (fltDigress and evDigress, for flight/system updates and
event/goal updates, respectively). The plan rule picks the event, ev, with the earli-
est start time from nevs and (non-deterministically) selects a list of flight instances,
fltil, from the set of flight instance lists arriving at the event city before the start
time. The set of possible flights is stored in a constant FltDB. log1 is log with an item
recording the rule firing added. The conditional if ... does the above computing.

crl [plan]: {tc(dt,city, loc, nevs) log}
=> {tc(dt, city, loc, evs0, ev, fltil) log1} if ...

The rule noUFlts handles cases in which there is no usable flight instance list given
the traveler time and location and the time and location of the next event. If ev is
optional then it is dropped (recording this in the log) and the rule plan is applied
to the remaining events; otherwise, the configuration becomes critical and execution
terminates. The rule flt models taking the next flight, assuming the flight departure
time is later than the traveler’s current time. This rule updates the traveler’s time to the
flight arrival time dtArr and traveler’s city to the destination city1. Then, the flight
instance taken is removed from the list.
crl [flt]: {tc(dt, city0, airport, evs,ev,flti ; fltil) conf}
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=> {tc(dtArr, city1, airport, evs,ev, fltil) conf1} if ....

The event rule (not shown) models attending the currently selected event. It can be
applied when the traveler city is the same as the event city and the current time is not
after the event start. As for the flight rule, the current time is updated to the event end
time and the traveler returns to the airport. If the traveler arrives at the event city too
late, as for the noUFlts rule, if the event is optional, the event rule drops the event
and enters a log item, otherwise it produces a critical TConf. The replan rule handles
the situation in which the traveler city is not the event city and the next flight, if any,
does not depart from the traveler city or has been missed. The pending flight instance
list is dropped, the event is put back in the event set, and a log item is added to the log.

The update rule fltDigress only applies if the digression counter is greater than
zero and the rule decrements the counter. A flight digression, fdig, is non-deterministi-
cally selected from the available digressions (the first argument to di).

crl [fltDigress]: {tconf di(fdig digs, s n) conf}
=> {tconf1 di(digs fdig,n) conf1}

if tc(dt, city0, airport, evs,ev, flti ; fltil) := tconf

∧ city0 =/= getCity(ev)

∧ tconf1 conf1 := applyDigression(tconf,conf,fdig)

The first condition exposes the structure of tconf to ensure there is a pending flight
to update. The auxiliary function applyDigression specifies the result of the up-
date. For example, the cancel update removes flti from the list and adds a log item
recording that this flight instance is cancelled. The case where the update description
has the form di(fdig digs) is similar, except here fdig is removed when applied,
and updating stops when there are no more update elements in the set. Similarly, the
rule evDigress non-deterministically selects an event digression from the configura-
tion’s digression set and applies the auxiliary function applyEvDigress to determine
the effect of the update. It only applies if the update counter is greater than zero, and
the TConf component has a selected next event.

A planning scenario is defined by an initial system configuration iSys, a database
of flights FltDB, a database of events EvDB, and an update description. A trace iSys

-TR-> xSys is a sequence of applications of rule instances from the travel rules TR,
leading from iSys to xSys. It is a compliant goal trace if xSys satisfies the goal con-
dition (goal) that the traveler configuration has no remaining events, and no required
events have been missed. Formally, the traveler component of xSys must have the form
tc(dt,city,loc,mtE), since, when a required event is missed, it is rewritten to a
term of the form tcCrit(dt,city,loc,evs,ev,comment).

Checking (n, a, b)-resilience. Checking (n, a, b)-resilience in the travel planning sys-
tem is implemented by the equationally-defined function isAbRes using Maude’s re-
flection capability and strategy language. As previously mentioned, the upper bound on
time is implicitly determined by the times and durations of available events, not treated
as a parameter.

The function isAbRes checks (n, a, b)-resilience by first using metaSearch to find
a candidate goal state, then metaSearchPath gives the corresponding compliant goal
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N: 1 2 3

2ev R? time R? time R? time

247 N 86ms - - - -
246 Y 81ms Y 147ms N 7476ms

3ev R? time R? time R? time

247 N 1400ms - - - -
246 Y 325ms Y 685ms NF -

(a) flight/system update rules

N: 1 2 3

2ev R? time R? time R? time

247 Y 78ms N 77ms - -
246 Y 98ms N 34800ms - -

3ev R? time R? time R? time

247 Y 143ms N 2627ms - -
246 Y 220ms Y 633ms Y 2634ms

(b) event/goal update rules
Fig. 2: Summary of (n, a, b)-resilience experiments

trace6 The candidate trace is converted to a rewrite strategy (representing the trace’s
list of rule instances). The function checkAbRes iterates through the initial prefixes of
the strategy, using metaSRewrite to follow the trace prefix. This implements a check
for reaction traces at all possible points of update rule application (cf. Definition 11).
For each state resulting from executing a prefix, the function checkDigs is called to
apply each one of the available updates, and then we invoke isAbRes to check for an
(n− 1, a− d, b)-resilient extension trace, where d is the number of time steps up to the
end of the prefix. If n is zero, abResCheck simply finds a compliant goal trace. If no
(n− 1, a− d, b)-resilient extension trace can be found, then the current candidate trace
is rejected, and isAbRes continues searching for the next candidate trace. If the search
for candidate traces fails, then the system under consideration is not (n, a, b)-resilient.
If the check for an (n−1, a−d, b)-resilient extension trace succeeds for every update of
every prefix execution, then the strategy is returned as a witness for (n, a, b)-resilience.
We tested (n, a, b)-resilience to flight/system updates and event/goal updates with in-
stances of the following command.
red isAbRes([’TRAVEL-SCENARIO],N,allDi,SYST,patT,tCond,uStrat,0).

red isAbRes([’TRAVEL-SCENARIO],1,allEv,iSysT,patT,tCond,ueStrat,0).

The results are summarized in Table 2. Note that N is the number of updates (1, 2, or
3), SYST is (the meta representation of) an initial state with a starting day that is as
late as possible to succeed if nothing goes wrong (247) or one day earlier (246) and
2 or 3 events. patT and tCond are the metaSearch pattern and condition arguments
and uStrat is used to construct the update rule strategy. In the summary tables the R?
indicates the result of isAbRes: Y for yes (a non-empty strategy is returned) and N for
no. A dash indicates the experiment not done (because the check fails for smaller N).
Lastly, allEv is the set of all implemented event update descriptions.

6 Conclusions and Related Work

We have shown that, for η-simple PPSs with traces containing only facts of bounded
size, the (n, a, b)-resilience problem is ΣP

2n+1-complete. In [1], we showed that the
version of this problem without time bounds is PSPACE-complete for balanced sys-
tems with traces containing only facts of bounded size. In addition to the formal model

6 Execution terminates if a critical state is reached, so paths to goal states are always compliant.
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and complexity results, we have implemented automated verification of time-bounded
resilience using Maude. Resilience has been studied in diverse areas such as civil en-
gineering [8], disaster studies [29], and environmental science [16]. Formalizations of
resilience are often tailored to specific applications [37,4,30,19,27] and cannot be easily
adapted to different systems. However, while we illustrated time-bounded resilience via
an example of a PPS modeling a flight planning scenario, our earlier work has studied
similar properties for a diverse range of other critical, time-sensitive systems, from col-
laborative systems subject to governmental regulations [24], to distributed unmanned
aerial vehicles (UAV) performing safety-critical tasks [21,22]. The strength of our for-
malism is its flexibility in modeling a wide range of multi-agent systems.

Interest in resilience and related concepts such as robustness [9], recoverability
[22,33], fault tolerance [25], and reliability [5], has grown in recent years. In [40,31],
the authors define a notion of robustness in which a system is robust if the actions taken
by an adversary cannot force the system to release more information than it would in
the absence of the adversary’s actions. In [33], the authors study time-bounded recovery
for logical scenarios, which are families of system states represented by patterns whose
variables are constrained to describe an operating domain, and where recoverability is
parameterized by an ordered set of safety conditions. Intuitively, a t-recoverable logical
scenario is one which, when operating in normal mode, can recover from a lower-level
safety condition to an optimal safety condition within t time steps, without reaching
an unsafe condition. Like our formalization, t-recoverability concerns recovery from a
deviation from normal execution. The primary distinction in [33] is that deviations are
internal to the system, rules update the model state and compute control commands,
and enabled rules must fire before time passes, as is common in real-time systems.

Our definition of time-bounded resilience (Definition 11) can be seen as a modifica-
tion of [1, Definitions 9-10], with time parameters a and b and taking into account both
system and goal updates. Here, the recoverability conditions from [1] are simplified to
the total relation on configurations. Further investigation of recoverability conditions
and resilience with respect to update rules that consume or create critical facts is left for
future work. Another avenue of future work is to find conditions beyond η-simplicity
which allow for polynomial-time solvability of the trace compliance problem. We also
plan to study time-bounded resilience problems with respect to update rules that con-
sume or create critical facts, and other variations involving, e.g., real-time models and
infinite traces. We are interested in the relationship between resilience and other prop-
erties of time-sensitive distributed systems [22], such realizability, recoverability, reli-
ability, and survivability, as well as in specific applications of resilience, where further
implementation results could provide interesting insights.
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